Hidden Maxwell Stratum in Euler's Elastic Problem
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 409-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

This investigation continues the study of the classical problem of stationary configurations of an elastic rod on a plane. The length of the rod, the ends of the rod and the directions at the ends are fixed. The problem was first studied by Leonard Euler in 1744 and the optimal synthesis problem is still an open problem. Euler described a family of geodesics containing the solutions, which are called Euler elasticae. It is known that sufficiently small pieces of Euler elasticae are optimal, i.e., they have a minimum of the potential energy. In theory, the point where an optimal curve loses its optimality is called a cut point. Usually several optimal curves arrive at such points, so the points have multiplicity more than 1 and are called Maxwell points. The aim of this work is to describe numerically Maxwell points where two nonsymmetric elasticae come with the same length and energy value.
Keywords: Euler elastica, Maxwell strata, optimal control.
@article{ND_2019_15_4_a2,
     author = {A. A. Ardentov},
     title = {Hidden {Maxwell} {Stratum} in {Euler's} {Elastic} {Problem}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {409--414},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a2/}
}
TY  - JOUR
AU  - A. A. Ardentov
TI  - Hidden Maxwell Stratum in Euler's Elastic Problem
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 409
EP  - 414
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a2/
LA  - en
ID  - ND_2019_15_4_a2
ER  - 
%0 Journal Article
%A A. A. Ardentov
%T Hidden Maxwell Stratum in Euler's Elastic Problem
%J Russian journal of nonlinear dynamics
%D 2019
%P 409-414
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a2/
%G en
%F ND_2019_15_4_a2
A. A. Ardentov. Hidden Maxwell Stratum in Euler's Elastic Problem. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 409-414. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a2/

[1] Sachkov, Yu. L., “Maxwell Strata in Euler's Elastic Problem”, J. Dyn. Contr. Syst., 14:2 (2008), 169–234 | DOI | MR | Zbl

[2] Euler, L., Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti: Additamentum 1. De curvis elasticis, Bousquet, Lausanne, 1744 | MR

[3] Arnold, V. I., Gusein-Zade, S. M., and Varchenko, A. N., Singularities of Differentiable Maps, v. 1, Modern Birkhäuser Classics, Classification of Critical Points, Caustics and Wave Fronts, Birkhäuser/Springer, New York, 2012, xii+382 pp. | MR

[4] Sachkov, Yu. L., “Conjugate Points in Euler's Elastic Problem”, J. Dyn. Control Syst., 14:3 (2008), 409–439 | DOI | MR | Zbl

[5] Sachkov, Yu. L. and Sachkova, E. L., “Exponential Mapping in Euler's Elastic Problem”, J. Dyn. Control Syst., 20:4 (2014), 443–464 | DOI | MR | Zbl

[6] Avtomat. i Telemekh., 2018, no. 7, 22–40 (Russian) | DOI | DOI | MR | Zbl