Some Trajectories of a Point in the Potential of a Fixed Ring and Center
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 587-592.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of three-dimensional motion of a passively gravitating point in the potential created by a homogeneous thin fixed ring and a point located in the center of the ring is considered. Motion of the point allows two first integrals. In the paper equilibrium points and invariant manifolds of the phase space of the system are found. Motions in them are analyzed. Bifurcations in the phase plane corresponding to the motion in the equatorial plane are shown.
Keywords: celestial mechanics, axisymmetric potential, center, ring, phase space, first integrals
Mots-clés : phase portrait, bifurcations.
@article{ND_2019_15_4_a18,
     author = {A. V. Sakharov},
     title = {Some {Trajectories} of a {Point} in the {Potential} of a {Fixed} {Ring} and {Center}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {587--592},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a18/}
}
TY  - JOUR
AU  - A. V. Sakharov
TI  - Some Trajectories of a Point in the Potential of a Fixed Ring and Center
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 587
EP  - 592
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a18/
LA  - en
ID  - ND_2019_15_4_a18
ER  - 
%0 Journal Article
%A A. V. Sakharov
%T Some Trajectories of a Point in the Potential of a Fixed Ring and Center
%J Russian journal of nonlinear dynamics
%D 2019
%P 587-592
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a18/
%G en
%F ND_2019_15_4_a18
A. V. Sakharov. Some Trajectories of a Point in the Potential of a Fixed Ring and Center. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 587-592. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a18/

[1] Binney, J. and Tremaine S., Galactic Dynamics, 3rd ed., Princeton Univ. Press, Princeton, N.J., 1994, xv, 733 pp. | MR

[2] Kutuzov, S. A., “Orbits in “Disk + Halo” Galaxy Model”, Order and Chaos in Stellar and Planetary Systems, ASP Conf. Proc., 316, eds. G. G. Byrd et al., Astronomical Society of the Pacific, San Francisco, 2004, 37–42

[3] Duboshin, G. N., The Theory of Attraction, Fizmatlit, Moscow, 1961, 288 pp. (Russian)

[4] Lass, H. and Blitzer, L., “The Gravitational Potential due to Uniform Disks and Rings”, Celestial Mech., 30:3 (1983), 225–228 | DOI | MR | Zbl

[5] Broucke, R. A. and Elipe, A., “The Dynamics of Orbits in a Potential Field of a Solid Circular Ring”, Regul. Chaotic Dyn., 10:2 (2005), 129–143 | DOI | MR | Zbl

[6] Tresaco, E., Elipe, A., and Riaguas, A., “Dynamics of a Particle under the Gravitational Potential of a Massive Annulus: Properties and Equilibrium Description”, Celestial Mech. Dynam. Astronom., 111:4 (2011), 431–447 | DOI | MR | Zbl

[7] Alberti, A. and Vidal, C., “Dynamics of a Particle in a Gravitational Field of a Homogeneous Annulus Disk”, Celestial Mech. Dynam. Astronom., 98:2 (2007), 75–93 | DOI | MR | Zbl

[8] Sidorenko, V. V., “Dynamics of “Jumping” Trojans: A Perturbative Treatment”, Celestial Mech. Dynam. Astronom., 130:10 (2018), 67, 18 pp. | DOI | MR