Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_4_a18, author = {A. V. Sakharov}, title = {Some {Trajectories} of a {Point} in the {Potential} of a {Fixed} {Ring} and {Center}}, journal = {Russian journal of nonlinear dynamics}, pages = {587--592}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a18/} }
A. V. Sakharov. Some Trajectories of a Point in the Potential of a Fixed Ring and Center. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 587-592. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a18/
[1] Binney, J. and Tremaine S., Galactic Dynamics, 3rd ed., Princeton Univ. Press, Princeton, N.J., 1994, xv, 733 pp. | MR
[2] Kutuzov, S. A., “Orbits in “Disk + Halo” Galaxy Model”, Order and Chaos in Stellar and Planetary Systems, ASP Conf. Proc., 316, eds. G. G. Byrd et al., Astronomical Society of the Pacific, San Francisco, 2004, 37–42
[3] Duboshin, G. N., The Theory of Attraction, Fizmatlit, Moscow, 1961, 288 pp. (Russian)
[4] Lass, H. and Blitzer, L., “The Gravitational Potential due to Uniform Disks and Rings”, Celestial Mech., 30:3 (1983), 225–228 | DOI | MR | Zbl
[5] Broucke, R. A. and Elipe, A., “The Dynamics of Orbits in a Potential Field of a Solid Circular Ring”, Regul. Chaotic Dyn., 10:2 (2005), 129–143 | DOI | MR | Zbl
[6] Tresaco, E., Elipe, A., and Riaguas, A., “Dynamics of a Particle under the Gravitational Potential of a Massive Annulus: Properties and Equilibrium Description”, Celestial Mech. Dynam. Astronom., 111:4 (2011), 431–447 | DOI | MR | Zbl
[7] Alberti, A. and Vidal, C., “Dynamics of a Particle in a Gravitational Field of a Homogeneous Annulus Disk”, Celestial Mech. Dynam. Astronom., 98:2 (2007), 75–93 | DOI | MR | Zbl
[8] Sidorenko, V. V., “Dynamics of “Jumping” Trojans: A Perturbative Treatment”, Celestial Mech. Dynam. Astronom., 130:10 (2018), 67, 18 pp. | DOI | MR