Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 569-575
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider left-invariant optimal control problems on connected Lie groups. We describe the symmetries of the exponential map that are induced by the symmetries of the vertical part of the Hamiltonian system of the Pontryagin maximum principle. These symmetries play a key role in investigation of optimality of extremal trajectories. For connected Lie groups such that the generic coadjoint orbit has codimension not more than 1 and a connected stabilizer we introduce a general construction for such symmetries of the exponential map.
Keywords:
symmetry, geometric control theory, Riemannian geometry, sub-Riemannian geometry.
@article{ND_2019_15_4_a16,
author = {A. V. Podobryaev},
title = {Symmetric {Extremal} {Trajectories} in {Left-Invariant} {Optimal} {Control} {Problems}},
journal = {Russian journal of nonlinear dynamics},
pages = {569--575},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/}
}
TY - JOUR AU - A. V. Podobryaev TI - Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems JO - Russian journal of nonlinear dynamics PY - 2019 SP - 569 EP - 575 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/ LA - en ID - ND_2019_15_4_a16 ER -
A. V. Podobryaev. Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 569-575. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/