Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 569-575

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider left-invariant optimal control problems on connected Lie groups. We describe the symmetries of the exponential map that are induced by the symmetries of the vertical part of the Hamiltonian system of the Pontryagin maximum principle. These symmetries play a key role in investigation of optimality of extremal trajectories. For connected Lie groups such that the generic coadjoint orbit has codimension not more than 1 and a connected stabilizer we introduce a general construction for such symmetries of the exponential map.
Keywords: symmetry, geometric control theory, Riemannian geometry, sub-Riemannian geometry.
@article{ND_2019_15_4_a16,
     author = {A. V. Podobryaev},
     title = {Symmetric {Extremal} {Trajectories} in {Left-Invariant} {Optimal} {Control} {Problems}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {569--575},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/}
}
TY  - JOUR
AU  - A. V. Podobryaev
TI  - Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 569
EP  - 575
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/
LA  - en
ID  - ND_2019_15_4_a16
ER  - 
%0 Journal Article
%A A. V. Podobryaev
%T Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems
%J Russian journal of nonlinear dynamics
%D 2019
%P 569-575
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/
%G en
%F ND_2019_15_4_a16
A. V. Podobryaev. Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 569-575. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/