Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 569-575.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider left-invariant optimal control problems on connected Lie groups. We describe the symmetries of the exponential map that are induced by the symmetries of the vertical part of the Hamiltonian system of the Pontryagin maximum principle. These symmetries play a key role in investigation of optimality of extremal trajectories. For connected Lie groups such that the generic coadjoint orbit has codimension not more than 1 and a connected stabilizer we introduce a general construction for such symmetries of the exponential map.
Keywords: symmetry, geometric control theory, Riemannian geometry, sub-Riemannian geometry.
@article{ND_2019_15_4_a16,
     author = {A. V. Podobryaev},
     title = {Symmetric {Extremal} {Trajectories} in {Left-Invariant} {Optimal} {Control} {Problems}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {569--575},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/}
}
TY  - JOUR
AU  - A. V. Podobryaev
TI  - Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 569
EP  - 575
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/
LA  - en
ID  - ND_2019_15_4_a16
ER  - 
%0 Journal Article
%A A. V. Podobryaev
%T Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems
%J Russian journal of nonlinear dynamics
%D 2019
%P 569-575
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/
%G en
%F ND_2019_15_4_a16
A. V. Podobryaev. Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 569-575. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/

[1] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004 | DOI | MR | Zbl

[2] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., The Mathematical Theory of Optimal Processes, ed. L. W. Neustadt, Wiley, New York, 1962, viii+360 pp. | MR | Zbl

[3] Krantz, S. G. and Parks, H. R., The Implicit Function Theorem: History, Theory, and Applications, Birkhäuser, Boston, Mass., 2002, xii+163 pp. | MR | Zbl

[4] Sachkov, Yu. L., “Maxwell Strata in Euler's Elastic Problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234 | DOI | MR | Zbl

[5] Avtomat. i Telemekh., 2018, no. 7, 22–40 (Russian) | DOI | DOI | MR | Zbl

[6] Agrachev, A., Barilari, D., and Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2019, 762 pp. | MR

[7] Autenried, C. and Godoy Molina, M., “The Sub-Riemannian Cut Locus of $H$-Type Groups”, Math. Nachr., 289:1 (2016), 4–12 | DOI | MR | Zbl

[8] Myasnichenko, O., “Nilpotent $(3, 6)$ Sub-Riemannian Problem”, J. Dyn. Contr. Syst., 8:4 (2002), 573–597 | DOI | MR | Zbl

[9] Montanari, A. and Morbidelli, D., “On the subRiemannian cut locus in a model of free two-step Carnot group”, Calc. Var. Partial Dif., 56:2 (2017), 36, 27 pp. | DOI | MR | Zbl

[10] Rizzi, L. and Serres, U., “On the Cut Locus of Free, Step Two Carnot Groups”, Proc. Amer. Math. Soc., 145:12 (2017), 5341–5357 | DOI | MR | Zbl

[11] Mat. Sb., 197:2 (2006), 95–116 (Russian) | DOI | DOI | MR | Zbl

[12] Mat. Sb., 197:4 (2006), 123–150 (Russian) | DOI | DOI | MR | Zbl

[13] Mat. Sb., 197:6 (2006), 111–160 (Russian) | DOI | DOI | MR | Zbl

[14] Mat. Sb., 202:11 (2011), 31–54 (Russian) | DOI | DOI | MR | Zbl

[15] Ardentov, A. A. and Sachkov, Yu. L., “Conjugate Points in Nilpotent Sub-Riemannian Problem on the Engel Group”, J. Math. Sci. (N. Y.), 195:3 (2013), 369–390 | DOI | MR | Zbl

[16] Ardentov, A. A. and Sachkov, Yu. L., “Cut Time in Sub-Riemannian Problem on Engel Group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988 | DOI | MR | Zbl

[17] Ardentov, A. A. and Sachkov, Yu. L., “Maxwell Strata and Cut Locus in Sub-Riemannian Problem on Engel group”, Regul. Chaotic Dyn., 22:8 (2017), 909–936 | DOI | MR | Zbl

[18] Boscain, U. and Rossi, F., “Invariant Carnot – Carathéodory Metrics on $S^3$, $\mathrm{SO}(3)$, $\mathrm{SL}(2)$ and Lens Spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878 | DOI | MR | Zbl

[19] Sibirsk. Mat. Zh., 57:3 (2016), 527–542 (Russian) | DOI | MR | Zbl

[20] Sibirsk. Mat. Zh., 56:4 (2015), 762–774 (Russian) | DOI | MR | Zbl

[21] Autenried, C. and Markina, I., “Sub-Riemannian Geometry of Stiefel Manifolds”, SIAM J. Control Optim., 52:2 (2014), 939–959 | DOI | MR | Zbl

[22] Podobryaev, A. V. and Sachkov, Yu. L., “Cut Locus of a Left Invariant Riemannian Metric on $\mathrm{SO}(3)$ in the Axisymmetric Case”, J. Geom. Phys., 110 (2016), 436–453 | DOI | MR | Zbl

[23] Podobryaev, A. V. and Sachkov, Yu. L., “Symmetric Riemannian Problem on the Group of Proper Isometries of Hyperbolic Plane”, J. Dyn. Control Syst., 24:3 (2018), 391–423 | DOI | MR | Zbl

[24] Moiseev, I. and Sachkov, Yu. L., “Maxwell Strata in Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 16 (2010), 380–399 | DOI | MR | Zbl

[25] Sachkov, Yu. L., “Conjugate and Cut Time in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 16 (2010), 1018–1039 | DOI | MR | Zbl

[26] Sachkov, Yu. L., “Cut Locus and Optimal Synthesis in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 17 (2011), 293–321 | DOI | MR | Zbl

[27] Butt, Ya. A., Sachkov, Yu. L., and Bhatti, A. I., “Maxwell Strata and Conjugate Points in the Sub-Riemannian Problem on the Lie Group $\mathrm{SH(2)}$”, J. Dyn. Control Syst., 22:4 (2016), 747–770 | DOI | MR | Zbl

[28] Butt, Ya. A., Sachkov, Yu. L., and Bhatti, A. I., “Cut Locus and Optimal Synthesis in Sub-Riemannian Problem on the Lie Group $\mathrm{SH(2)}$”, J. Dyn. Control Syst., 23:1 (2017), 155–196 | DOI | MR

[29] Mat. Sb., 201:7 (2010), 99–120 (Russian) | DOI | DOI | MR | Zbl