Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_4_a16, author = {A. V. Podobryaev}, title = {Symmetric {Extremal} {Trajectories} in {Left-Invariant} {Optimal} {Control} {Problems}}, journal = {Russian journal of nonlinear dynamics}, pages = {569--575}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/} }
TY - JOUR AU - A. V. Podobryaev TI - Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems JO - Russian journal of nonlinear dynamics PY - 2019 SP - 569 EP - 575 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/ LA - en ID - ND_2019_15_4_a16 ER -
A. V. Podobryaev. Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 569-575. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a16/
[1] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004 | DOI | MR | Zbl
[2] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., The Mathematical Theory of Optimal Processes, ed. L. W. Neustadt, Wiley, New York, 1962, viii+360 pp. | MR | Zbl
[3] Krantz, S. G. and Parks, H. R., The Implicit Function Theorem: History, Theory, and Applications, Birkhäuser, Boston, Mass., 2002, xii+163 pp. | MR | Zbl
[4] Sachkov, Yu. L., “Maxwell Strata in Euler's Elastic Problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234 | DOI | MR | Zbl
[5] Avtomat. i Telemekh., 2018, no. 7, 22–40 (Russian) | DOI | DOI | MR | Zbl
[6] Agrachev, A., Barilari, D., and Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2019, 762 pp. | MR
[7] Autenried, C. and Godoy Molina, M., “The Sub-Riemannian Cut Locus of $H$-Type Groups”, Math. Nachr., 289:1 (2016), 4–12 | DOI | MR | Zbl
[8] Myasnichenko, O., “Nilpotent $(3, 6)$ Sub-Riemannian Problem”, J. Dyn. Contr. Syst., 8:4 (2002), 573–597 | DOI | MR | Zbl
[9] Montanari, A. and Morbidelli, D., “On the subRiemannian cut locus in a model of free two-step Carnot group”, Calc. Var. Partial Dif., 56:2 (2017), 36, 27 pp. | DOI | MR | Zbl
[10] Rizzi, L. and Serres, U., “On the Cut Locus of Free, Step Two Carnot Groups”, Proc. Amer. Math. Soc., 145:12 (2017), 5341–5357 | DOI | MR | Zbl
[11] Mat. Sb., 197:2 (2006), 95–116 (Russian) | DOI | DOI | MR | Zbl
[12] Mat. Sb., 197:4 (2006), 123–150 (Russian) | DOI | DOI | MR | Zbl
[13] Mat. Sb., 197:6 (2006), 111–160 (Russian) | DOI | DOI | MR | Zbl
[14] Mat. Sb., 202:11 (2011), 31–54 (Russian) | DOI | DOI | MR | Zbl
[15] Ardentov, A. A. and Sachkov, Yu. L., “Conjugate Points in Nilpotent Sub-Riemannian Problem on the Engel Group”, J. Math. Sci. (N. Y.), 195:3 (2013), 369–390 | DOI | MR | Zbl
[16] Ardentov, A. A. and Sachkov, Yu. L., “Cut Time in Sub-Riemannian Problem on Engel Group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988 | DOI | MR | Zbl
[17] Ardentov, A. A. and Sachkov, Yu. L., “Maxwell Strata and Cut Locus in Sub-Riemannian Problem on Engel group”, Regul. Chaotic Dyn., 22:8 (2017), 909–936 | DOI | MR | Zbl
[18] Boscain, U. and Rossi, F., “Invariant Carnot – Carathéodory Metrics on $S^3$, $\mathrm{SO}(3)$, $\mathrm{SL}(2)$ and Lens Spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878 | DOI | MR | Zbl
[19] Sibirsk. Mat. Zh., 57:3 (2016), 527–542 (Russian) | DOI | MR | Zbl
[20] Sibirsk. Mat. Zh., 56:4 (2015), 762–774 (Russian) | DOI | MR | Zbl
[21] Autenried, C. and Markina, I., “Sub-Riemannian Geometry of Stiefel Manifolds”, SIAM J. Control Optim., 52:2 (2014), 939–959 | DOI | MR | Zbl
[22] Podobryaev, A. V. and Sachkov, Yu. L., “Cut Locus of a Left Invariant Riemannian Metric on $\mathrm{SO}(3)$ in the Axisymmetric Case”, J. Geom. Phys., 110 (2016), 436–453 | DOI | MR | Zbl
[23] Podobryaev, A. V. and Sachkov, Yu. L., “Symmetric Riemannian Problem on the Group of Proper Isometries of Hyperbolic Plane”, J. Dyn. Control Syst., 24:3 (2018), 391–423 | DOI | MR | Zbl
[24] Moiseev, I. and Sachkov, Yu. L., “Maxwell Strata in Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 16 (2010), 380–399 | DOI | MR | Zbl
[25] Sachkov, Yu. L., “Conjugate and Cut Time in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 16 (2010), 1018–1039 | DOI | MR | Zbl
[26] Sachkov, Yu. L., “Cut Locus and Optimal Synthesis in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 17 (2011), 293–321 | DOI | MR | Zbl
[27] Butt, Ya. A., Sachkov, Yu. L., and Bhatti, A. I., “Maxwell Strata and Conjugate Points in the Sub-Riemannian Problem on the Lie Group $\mathrm{SH(2)}$”, J. Dyn. Control Syst., 22:4 (2016), 747–770 | DOI | MR | Zbl
[28] Butt, Ya. A., Sachkov, Yu. L., and Bhatti, A. I., “Cut Locus and Optimal Synthesis in Sub-Riemannian Problem on the Lie Group $\mathrm{SH(2)}$”, J. Dyn. Control Syst., 23:1 (2017), 155–196 | DOI | MR
[29] Mat. Sb., 201:7 (2010), 99–120 (Russian) | DOI | DOI | MR | Zbl