Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_4_a15, author = {A. P. Mashtakov}, title = {Sub-Riemannian {Geometry} in {Image} {Processing} and {Modeling} of the {Human} {Visual} {System}}, journal = {Russian journal of nonlinear dynamics}, pages = {561--568}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a15/} }
TY - JOUR AU - A. P. Mashtakov TI - Sub-Riemannian Geometry in Image Processing and Modeling of the Human Visual System JO - Russian journal of nonlinear dynamics PY - 2019 SP - 561 EP - 568 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a15/ LA - en ID - ND_2019_15_4_a15 ER -
A. P. Mashtakov. Sub-Riemannian Geometry in Image Processing and Modeling of the Human Visual System. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 561-568. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a15/
[1] Bekkers, E. J., Duits, R., Mashtakov, A., and Sanguinetti, G. R., “A PDE Approach to Data-Driven Sub-Riemannian Geodesics in $SE(2)$”, SIAM J. Imaging Sci., 8:4 (2015), 2740–2770 | DOI | MR | Zbl
[2] Duits, R., Ghosh, A., Dela Haije, T., and Mashtakov, A., “On Sub-Riemannian Geodesics in $SE(3)$ Whose Spatial Projections do not Have Cusps”, J. Dyn. Control Syst., 22:4 (2016), 771–805 | DOI | MR | Zbl
[3] Mashtakov, A. P. and Popov, A. Yu., “Extremal Controls in the Sub-Riemannian Problem on the Group of Motions of Euclidean Space”, Regul. Chaotic Dyn., 22:8 (2017), 952–957 | DOI | MR
[4] Mashtakov, A., Duits, R., Sachkov, Yu., Bekkers, E., and Beschastnyi, I., “Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics on $SO(3)$”, J. Math. Imaging Vis., 58:2 (2017), 239–264 | DOI | MR | Zbl
[5] Franceschiello, B., Mashtakov, A., Citti, G., and Sarti, A., “Geometrical Optical Illusion via Sub-Riemannian Geodesics in the Roto-Translation Group”, Differential Geom. Appl., 65 (2019), 55–77 | DOI | MR | Zbl
[6] Petitot, J., “The Neurogeometry of Pinwheels As a Sub-Riemannian Contact Structure”, J. Physiol. Paris, 97:2–3 (2003), 265–309 | DOI
[7] Citti, G. and Sarti, A., “A Cortical Based Model of Perceptual Completion in the Roto-Translation Space”, J. Math. Imaging Vis., 24:3 (2006), 307–326 | DOI | MR
[8] Tax, C. M., Duits, R., Vilanova, A., ter Haar Romeny, B. M., Hofman, P., Wagner, L., Leemans, A., and Ossenblok, P., “Evaluating Contextual Processing in Diffusion MRI: Application to Optic Radiation Reconstruction for Epilepsy Surgery”, PLoS ONE, 9:7 (2014), e101524 | DOI
[9] Montgomery, R., A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math. Surveys Monogr., 91, AMS, Providence, R.I., 2002, xx+259 pp. | MR | Zbl
[10] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004 | DOI | MR | Zbl
[11] Sovrem. Mat. Fundam. Napravl., 27 (2007), 5–59 (Russian) | DOI | MR | Zbl
[12] Agrachev, A., Barilari, D., and Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geometry from Hamiltonian Viewpoint, hal-02019181 (to appear) https://hal.archives-ouvertes.fr/hal-02019181
[13] Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monogr. Appl. Comput. Math., 3, 2nd ed., Cambridge Univ. Press, Cambridge, 1999, xx+378 pp. | MR | Zbl
[14] Mirebeau, J.-M., “Anisotropic Fast-Marching on Cartesian Grids Using Lattice Basis Reduction”, SIAM J. Numer. Anal., 52:4 (2014), 1573–1599 | DOI | MR | Zbl
[15] Sanguinetti, G., Duits, R., Bekkers, E., Janssen, M. H. J., Mashtakov, A., and Mirebeau, J. M., “Sub-Riemannian Fast Marching in $SE(2)$”, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Lecture Notes in Comput. Sci., 9423, eds. A. Pardo, J. Kittler, Springer, Cham, 2015, 366–374 | DOI | MR
[16] Duits, R., Meesters, S. P. L., Mirebeau, J.-M., and Portegies, J. M., “Optimal Paths for Variants of the 2D and 3D Reeds-Shepp Car with Applications in Image Analysis”, J. Math. Imaging Vis., 60:6 (2018), 816–848 | DOI | MR | Zbl
[17] Bekkers, E., Duits, R., Berendschot, T., and Romeny, B. H., “A Multi-Orientation Analysis Approach to Retinal Vessel Tracking”, J. Math. Imaging Vis., 49:3 (2014), 583–610 | DOI | Zbl
[18] Peyré, G., Péchaud, M., Keriven, R., and Cohen, L. D., “Geodesic Methods in Computer Vision and Graphics”, Found. Trends Comput. Graph. Vis., 5:34 (2010), 197–397