Sub-Riemannian Geometry in Image Processing and Modeling of the Human Visual System
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 561-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper summarizes results of a sequence of works related to usage of sub-Riemannian (SR) geometry in image processing and modeling of the human visual system. In recent research in psychology of vision (J. Petitot, G.Citti, A. Sarti) it was shown that SR geodesics appear as natural curves that model a mechanism of the primary visual cortex V1 of a human brain for completion of contours that are partially corrupted or hidden from observation. We extend the model to include data adaptivity via a suitable external cost in the SR metric. We show that data adaptive SR geodesics are useful in real image analysis applications and provide a refined model of V1 that takes into account the presence of a visual stimulus.
Keywords: sub-Riemannian, detection of salient lines, visual cortex, brain-inspired methods.
Mots-clés : vision
@article{ND_2019_15_4_a15,
     author = {A. P. Mashtakov},
     title = {Sub-Riemannian {Geometry} in {Image} {Processing} and {Modeling} of the {Human} {Visual} {System}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {561--568},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a15/}
}
TY  - JOUR
AU  - A. P. Mashtakov
TI  - Sub-Riemannian Geometry in Image Processing and Modeling of the Human Visual System
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 561
EP  - 568
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a15/
LA  - en
ID  - ND_2019_15_4_a15
ER  - 
%0 Journal Article
%A A. P. Mashtakov
%T Sub-Riemannian Geometry in Image Processing and Modeling of the Human Visual System
%J Russian journal of nonlinear dynamics
%D 2019
%P 561-568
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a15/
%G en
%F ND_2019_15_4_a15
A. P. Mashtakov. Sub-Riemannian Geometry in Image Processing and Modeling of the Human Visual System. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 561-568. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a15/

[1] Bekkers, E. J., Duits, R., Mashtakov, A., and Sanguinetti, G. R., “A PDE Approach to Data-Driven Sub-Riemannian Geodesics in $SE(2)$”, SIAM J. Imaging Sci., 8:4 (2015), 2740–2770 | DOI | MR | Zbl

[2] Duits, R., Ghosh, A., Dela Haije, T., and Mashtakov, A., “On Sub-Riemannian Geodesics in $SE(3)$ Whose Spatial Projections do not Have Cusps”, J. Dyn. Control Syst., 22:4 (2016), 771–805 | DOI | MR | Zbl

[3] Mashtakov, A. P. and Popov, A. Yu., “Extremal Controls in the Sub-Riemannian Problem on the Group of Motions of Euclidean Space”, Regul. Chaotic Dyn., 22:8 (2017), 952–957 | DOI | MR

[4] Mashtakov, A., Duits, R., Sachkov, Yu., Bekkers, E., and Beschastnyi, I., “Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics on $SO(3)$”, J. Math. Imaging Vis., 58:2 (2017), 239–264 | DOI | MR | Zbl

[5] Franceschiello, B., Mashtakov, A., Citti, G., and Sarti, A., “Geometrical Optical Illusion via Sub-Riemannian Geodesics in the Roto-Translation Group”, Differential Geom. Appl., 65 (2019), 55–77 | DOI | MR | Zbl

[6] Petitot, J., “The Neurogeometry of Pinwheels As a Sub-Riemannian Contact Structure”, J. Physiol. Paris, 97:2–3 (2003), 265–309 | DOI

[7] Citti, G. and Sarti, A., “A Cortical Based Model of Perceptual Completion in the Roto-Translation Space”, J. Math. Imaging Vis., 24:3 (2006), 307–326 | DOI | MR

[8] Tax, C. M., Duits, R., Vilanova, A., ter Haar Romeny, B. M., Hofman, P., Wagner, L., Leemans, A., and Ossenblok, P., “Evaluating Contextual Processing in Diffusion MRI: Application to Optic Radiation Reconstruction for Epilepsy Surgery”, PLoS ONE, 9:7 (2014), e101524 | DOI

[9] Montgomery, R., A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math. Surveys Monogr., 91, AMS, Providence, R.I., 2002, xx+259 pp. | MR | Zbl

[10] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004 | DOI | MR | Zbl

[11] Sovrem. Mat. Fundam. Napravl., 27 (2007), 5–59 (Russian) | DOI | MR | Zbl

[12] Agrachev, A., Barilari, D., and Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geometry from Hamiltonian Viewpoint, hal-02019181 (to appear) https://hal.archives-ouvertes.fr/hal-02019181

[13] Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monogr. Appl. Comput. Math., 3, 2nd ed., Cambridge Univ. Press, Cambridge, 1999, xx+378 pp. | MR | Zbl

[14] Mirebeau, J.-M., “Anisotropic Fast-Marching on Cartesian Grids Using Lattice Basis Reduction”, SIAM J. Numer. Anal., 52:4 (2014), 1573–1599 | DOI | MR | Zbl

[15] Sanguinetti, G., Duits, R., Bekkers, E., Janssen, M. H. J., Mashtakov, A., and Mirebeau, J. M., “Sub-Riemannian Fast Marching in $SE(2)$”, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Lecture Notes in Comput. Sci., 9423, eds. A. Pardo, J. Kittler, Springer, Cham, 2015, 366–374 | DOI | MR

[16] Duits, R., Meesters, S. P. L., Mirebeau, J.-M., and Portegies, J. M., “Optimal Paths for Variants of the 2D and 3D Reeds-Shepp Car with Applications in Image Analysis”, J. Math. Imaging Vis., 60:6 (2018), 816–848 | DOI | MR | Zbl

[17] Bekkers, E., Duits, R., Berendschot, T., and Romeny, B. H., “A Multi-Orientation Analysis Approach to Retinal Vessel Tracking”, J. Math. Imaging Vis., 49:3 (2014), 583–610 | DOI | Zbl

[18] Peyré, G., Péchaud, M., Keriven, R., and Cohen, L. D., “Geodesic Methods in Computer Vision and Graphics”, Found. Trends Comput. Graph. Vis., 5:34 (2010), 197–397