Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_4_a10, author = {V. V. Kozlov}, title = {Isoperimetric {Inequalities} for {Moments} of {Inertia} and {Stability} of {Stationary} {Motions} of a {Flexible} {Thread}}, journal = {Russian journal of nonlinear dynamics}, pages = {513--523}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a10/} }
TY - JOUR AU - V. V. Kozlov TI - Isoperimetric Inequalities for Moments of Inertia and Stability of Stationary Motions of a Flexible Thread JO - Russian journal of nonlinear dynamics PY - 2019 SP - 513 EP - 523 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a10/ LA - en ID - ND_2019_15_4_a10 ER -
%0 Journal Article %A V. V. Kozlov %T Isoperimetric Inequalities for Moments of Inertia and Stability of Stationary Motions of a Flexible Thread %J Russian journal of nonlinear dynamics %D 2019 %P 513-523 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a10/ %G en %F ND_2019_15_4_a10
V. V. Kozlov. Isoperimetric Inequalities for Moments of Inertia and Stability of Stationary Motions of a Flexible Thread. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 513-523. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a10/
[1] Appell, P., Traité de mécanique rationelle: Vol. 1. Statique. Dynamique du point, 6th ed., Gauthier-Villars, Paris, 1941, 612 pp. | MR
[2] Vesnitskii, A. I., Waves in Systems with Moving Boundaries and Loads, Nauka, Fizmatlit, Moscow, 2001, 320 pp. (Russian)
[3] Yakubovskii, Yu. V., Zhivov, V. S., Koritysskii, Ya. I., and Migushov, I. I., Fundamentals of Yarn Mechanics, Lyogkaya Industriya, Moscow, 1973, 271 pp. (Russian)
[4] Biggins, J. S. and Warner, M., “Understanding the Chain Fountain”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470:2163 (2014), 20130689 | DOI
[5] Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 2018, no. 1, 39–43 (Russian) | DOI | Zbl
[6] Pólya, G. and Szegö, G., Isoperimetric Inequalities in Mathematical Physics, Ann. Math. Stud., 27, Princeton Univ. Press, Princeton, N.J., 1951, xvi+279 pp. | MR
[7] Kuz'min, P. A., “On the Stability of a Circular Shape of a Flexible Thread”, Trudy KAI, 20 (1948), 69–91 (Russian)
[8] Kuz'min, P. A., “Stability of a Circular Shape of a Flexible Thread Having a Countable Set of Degrees of Freedom”, Trudy KAI, 22 (1949), 3–15 (Russian)
[9] Hurwitz, A., “Sur quelques applications géométriques des séries de Fourier”, Ann. Sci. Éc. Norm. Supér. (3), 19 (1902), 357–408 | DOI | MR | Zbl
[10] Sachs, H., “Über eine Klasse isoperimetrischer Probleme: 1, 2”, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe, 8 (1958/59), 121–126, 127–134 | MR | Zbl
[11] Groemer, H., Geometric Applications of Fourier Series and Spherical Harmonics, Encyclopedia Math. Appl., 61, Cambridge Univ. Press, Cambridge, 1996, xii+329 pp. | MR | Zbl
[12] Hardy, G. H., Littlewood, J. E., and Pólya, G., Inequalities, Cambridge Univ. Press, Cambridge, 1952, 324 pp. | MR | Zbl
[13] Betta, M. F., Brock, F., Mercaldo, A., and Posteraro, M. R., “A Weighted Isoperimetric Inequality and Applications to Symmetrization”, J. Inequal. Appl., 4:3 (1999), 215–240 | MR | Zbl
[14] Blaschke, W., Kreis und Kugel, 2nd ed., De Gruyter, Berlin, 2013, 175 pp. | MR
[15] Henrot, A., Philippin, G. A., and Safoui, A., “Some Isoperimetric Inequalities with Application to the Stekloff Problem”, J. Convex Anal., 15:3 (2008), 581–592 | MR | Zbl