Isoperimetric Inequalities for Moments of Inertia and Stability of Stationary Motions of a Flexible Thread
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 513-523.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the maximal value of the central moment of inertia of a closed homogeneous thread of fixed length is achieved on a curve in the form of a circle. This isoperimetric property plays a key role in investigating the stability of stationary motions of a flexible thread. A discrete variant of the isoperimetric inequality, when the mass of the thread is concentrated in a finite number of material particles, is established. An analog of the isoperimetric inequality for an inhomogeneous thread is proved.
Keywords: Sundman and Wirtinger inequalities, articulated polygon.
Mots-clés : moment of inertia
@article{ND_2019_15_4_a10,
     author = {V. V. Kozlov},
     title = {Isoperimetric {Inequalities} for {Moments} of {Inertia} and {Stability} of {Stationary} {Motions} of a {Flexible} {Thread}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {513--523},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a10/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Isoperimetric Inequalities for Moments of Inertia and Stability of Stationary Motions of a Flexible Thread
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 513
EP  - 523
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a10/
LA  - en
ID  - ND_2019_15_4_a10
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Isoperimetric Inequalities for Moments of Inertia and Stability of Stationary Motions of a Flexible Thread
%J Russian journal of nonlinear dynamics
%D 2019
%P 513-523
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a10/
%G en
%F ND_2019_15_4_a10
V. V. Kozlov. Isoperimetric Inequalities for Moments of Inertia and Stability of Stationary Motions of a Flexible Thread. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 513-523. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a10/

[1] Appell, P., Traité de mécanique rationelle: Vol. 1. Statique. Dynamique du point, 6th ed., Gauthier-Villars, Paris, 1941, 612 pp. | MR

[2] Vesnitskii, A. I., Waves in Systems with Moving Boundaries and Loads, Nauka, Fizmatlit, Moscow, 2001, 320 pp. (Russian)

[3] Yakubovskii, Yu. V., Zhivov, V. S., Koritysskii, Ya. I., and Migushov, I. I., Fundamentals of Yarn Mechanics, Lyogkaya Industriya, Moscow, 1973, 271 pp. (Russian)

[4] Biggins, J. S. and Warner, M., “Understanding the Chain Fountain”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470:2163 (2014), 20130689 | DOI

[5] Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 2018, no. 1, 39–43 (Russian) | DOI | Zbl

[6] Pólya, G. and Szegö, G., Isoperimetric Inequalities in Mathematical Physics, Ann. Math. Stud., 27, Princeton Univ. Press, Princeton, N.J., 1951, xvi+279 pp. | MR

[7] Kuz'min, P. A., “On the Stability of a Circular Shape of a Flexible Thread”, Trudy KAI, 20 (1948), 69–91 (Russian)

[8] Kuz'min, P. A., “Stability of a Circular Shape of a Flexible Thread Having a Countable Set of Degrees of Freedom”, Trudy KAI, 22 (1949), 3–15 (Russian)

[9] Hurwitz, A., “Sur quelques applications géométriques des séries de Fourier”, Ann. Sci. Éc. Norm. Supér. (3), 19 (1902), 357–408 | DOI | MR | Zbl

[10] Sachs, H., “Über eine Klasse isoperimetrischer Probleme: 1, 2”, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe, 8 (1958/59), 121–126, 127–134 | MR | Zbl

[11] Groemer, H., Geometric Applications of Fourier Series and Spherical Harmonics, Encyclopedia Math. Appl., 61, Cambridge Univ. Press, Cambridge, 1996, xii+329 pp. | MR | Zbl

[12] Hardy, G. H., Littlewood, J. E., and Pólya, G., Inequalities, Cambridge Univ. Press, Cambridge, 1952, 324 pp. | MR | Zbl

[13] Betta, M. F., Brock, F., Mercaldo, A., and Posteraro, M. R., “A Weighted Isoperimetric Inequality and Applications to Symmetrization”, J. Inequal. Appl., 4:3 (1999), 215–240 | MR | Zbl

[14] Blaschke, W., Kreis und Kugel, 2nd ed., De Gruyter, Berlin, 2013, 175 pp. | MR

[15] Henrot, A., Philippin, G. A., and Safoui, A., “Some Isoperimetric Inequalities with Application to the Stekloff Problem”, J. Convex Anal., 15:3 (2008), 581–592 | MR | Zbl