Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_4_a1, author = {A. K. Adabrah and V. Dragovi\'c and M. Radnovi\'c}, title = {Elliptical {Billiards} in the {Minkowski} {Plane} and {Extremal} {Polynomials}}, journal = {Russian journal of nonlinear dynamics}, pages = {397--407}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a1/} }
TY - JOUR AU - A. K. Adabrah AU - V. Dragović AU - M. Radnović TI - Elliptical Billiards in the Minkowski Plane and Extremal Polynomials JO - Russian journal of nonlinear dynamics PY - 2019 SP - 397 EP - 407 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a1/ LA - en ID - ND_2019_15_4_a1 ER -
A. K. Adabrah; V. Dragović; M. Radnović. Elliptical Billiards in the Minkowski Plane and Extremal Polynomials. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 397-407. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a1/
[1] Adabrah, A. K., Dragović, V., and Radnović, M., “Periodic Billiards within Conics in the Minkowski Plane and Akhiezer Polynomials”, Regul. Chaotic Dyn., 24:5 (2019), 464–501 | DOI | MR
[2] Achyezer, N. I., “Über einige Funktionen, welche in zwei gegebenen Intervallen am wenigsten von Null abweichen: 1”, Izv. Akad. Nauk SSSR. Ser. 7, 1932, no. 9, 1163–1202
[3] Achyezer, N. I., “Über einige Funktionen, welche in zwei gegebenen Intervallen am wenigsten von Null abweichen: 2”, Izv. Akad. Nauk SSSR. Ser. 7, 1933, no. 3, 309–344
[4] Achyezer, N. I., “Über einige Funktionen, welche in zwei gegebenen Intervallen am wenigsten von Null abweichen: 3”, Izv. Akad. Nauk SSSR. Ser. 7, 1933, no. 4, 499–536
[5] Birkhoff, G. and Morris, R., “Confocal Conics in Space-Time”, Amer. Math. Monthly, 69:1 (1962), 1–4 | DOI | MR | Zbl
[6] Dragović, V. and Radnović, M., “Ellipsoidal Billiards in Pseudo-Euclidean Spaces and Relativistic Quadrics”, Adv. Math., 231 (2012), 1173–1201 | DOI | MR | Zbl
[7] Dragović, V. and Radnović, M., “Minkowski Plane, Confocal Conics, and Billiards”, Publ. Inst. Math. (Beograd) (N. S.), 94(108) (2013), 17–30 | DOI | MR | Zbl
[8] Dragović, V. and Radnović, M., “Periodic Ellipsoidal Billiard Trajectories and Extremal Polynomials”, Comm. Math. Phys., 372:1 (2019), 183–211 | DOI | MR | Zbl
[9] Dragović, V. and Radnović, M., “Caustics of Poncelet Polygons and Classical Extremal Polynomials”, Regul. Chaotic Dyn., 24:1 (2019), 1–35 | DOI | MR | Zbl
[10] Genin, D., Khesin, B., and Tabachnikov, S., “Geodesics on an Ellipsoid in Minkowski Space”, Enseign. Math. (2), 53:3–4 (2007), 307–331 | MR | Zbl
[11] Khesin, B. and Tabachnikov, S., “Pseudo-Riemannian Geodesics and Billiards”, Adv. Math., 221:4 (2009), 1364–1396 | DOI | MR | Zbl
[12] Kreĭn, M. G., Levin, B. Ya., and Nudel'man, A. A., “On Special Representations of Polynomials That Are Positive on a System of Closed Intervals, and Some Applications”, Functional Analysis, Optimization, and Mathematical Economics: A Collection of Papers Dedicated to the Memory of L. V. Kantorovich, ed. L. J. Leifman, Oxford Univ. Press, New York, 1990, 56–114 | MR | Zbl
[13] Wang, Y.-X., Fan, H., Shi, K.-J., Wang, Ch., Zhang, K., and Zeng, Y., “Full Poncelet Theorem in Minkowski dS and AdS Spaces”, Chin. Phys. Lett., 26:1 (2009), 010201, 4 pp. | DOI