Elliptical Billiards in the Minkowski Plane and Extremal Polynomials
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 397-407.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive necessary and sufficient conditions for periodic trajectories of billiards within an ellipse in the Minkowski plane in terms of an underlying elliptic curve. Equivalent conditions are derived in terms of polynomial-functional equations as well. The corresponding polynomials are related to the classical extremal polynomials. Similarities and differences with respect to the previously studied Euclidean case are indicated.
Keywords: Minkowski plane, elliptical billiards, elliptic curve, Akhiezer polynomials.
@article{ND_2019_15_4_a1,
     author = {A. K. Adabrah and V. Dragovi\'c and M. Radnovi\'c},
     title = {Elliptical {Billiards} in the {Minkowski} {Plane} and {Extremal} {Polynomials}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {397--407},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a1/}
}
TY  - JOUR
AU  - A. K. Adabrah
AU  - V. Dragović
AU  - M. Radnović
TI  - Elliptical Billiards in the Minkowski Plane and Extremal Polynomials
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 397
EP  - 407
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a1/
LA  - en
ID  - ND_2019_15_4_a1
ER  - 
%0 Journal Article
%A A. K. Adabrah
%A V. Dragović
%A M. Radnović
%T Elliptical Billiards in the Minkowski Plane and Extremal Polynomials
%J Russian journal of nonlinear dynamics
%D 2019
%P 397-407
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a1/
%G en
%F ND_2019_15_4_a1
A. K. Adabrah; V. Dragović; M. Radnović. Elliptical Billiards in the Minkowski Plane and Extremal Polynomials. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 397-407. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a1/

[1] Adabrah, A. K., Dragović, V., and Radnović, M., “Periodic Billiards within Conics in the Minkowski Plane and Akhiezer Polynomials”, Regul. Chaotic Dyn., 24:5 (2019), 464–501 | DOI | MR

[2] Achyezer, N. I., “Über einige Funktionen, welche in zwei gegebenen Intervallen am wenigsten von Null abweichen: 1”, Izv. Akad. Nauk SSSR. Ser. 7, 1932, no. 9, 1163–1202

[3] Achyezer, N. I., “Über einige Funktionen, welche in zwei gegebenen Intervallen am wenigsten von Null abweichen: 2”, Izv. Akad. Nauk SSSR. Ser. 7, 1933, no. 3, 309–344

[4] Achyezer, N. I., “Über einige Funktionen, welche in zwei gegebenen Intervallen am wenigsten von Null abweichen: 3”, Izv. Akad. Nauk SSSR. Ser. 7, 1933, no. 4, 499–536

[5] Birkhoff, G. and Morris, R., “Confocal Conics in Space-Time”, Amer. Math. Monthly, 69:1 (1962), 1–4 | DOI | MR | Zbl

[6] Dragović, V. and Radnović, M., “Ellipsoidal Billiards in Pseudo-Euclidean Spaces and Relativistic Quadrics”, Adv. Math., 231 (2012), 1173–1201 | DOI | MR | Zbl

[7] Dragović, V. and Radnović, M., “Minkowski Plane, Confocal Conics, and Billiards”, Publ. Inst. Math. (Beograd) (N. S.), 94(108) (2013), 17–30 | DOI | MR | Zbl

[8] Dragović, V. and Radnović, M., “Periodic Ellipsoidal Billiard Trajectories and Extremal Polynomials”, Comm. Math. Phys., 372:1 (2019), 183–211 | DOI | MR | Zbl

[9] Dragović, V. and Radnović, M., “Caustics of Poncelet Polygons and Classical Extremal Polynomials”, Regul. Chaotic Dyn., 24:1 (2019), 1–35 | DOI | MR | Zbl

[10] Genin, D., Khesin, B., and Tabachnikov, S., “Geodesics on an Ellipsoid in Minkowski Space”, Enseign. Math. (2), 53:3–4 (2007), 307–331 | MR | Zbl

[11] Khesin, B. and Tabachnikov, S., “Pseudo-Riemannian Geodesics and Billiards”, Adv. Math., 221:4 (2009), 1364–1396 | DOI | MR | Zbl

[12] Kreĭn, M. G., Levin, B. Ya., and Nudel'man, A. A., “On Special Representations of Polynomials That Are Positive on a System of Closed Intervals, and Some Applications”, Functional Analysis, Optimization, and Mathematical Economics: A Collection of Papers Dedicated to the Memory of L. V. Kantorovich, ed. L. J. Leifman, Oxford Univ. Press, New York, 1990, 56–114 | MR | Zbl

[13] Wang, Y.-X., Fan, H., Shi, K.-J., Wang, Ch., Zhang, K., and Zeng, Y., “Full Poncelet Theorem in Minkowski dS and AdS Spaces”, Chin. Phys. Lett., 26:1 (2009), 010201, 4 pp. | DOI