Asymptotic Stabilizability of Underactuated Hamiltonian Systems With Two Degrees of Freedom
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 309-326.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an underactuated (simple) Hamiltonian system with two degrees of freedom and one degree of underactuation, a rather general condition that ensures its stabilizability, by means of the existence of a (simple) Lyapunov function, was found in a recent paper by D.E. Chang within the context of the energy shaping method. Also, in the same paper, some additional assumptions were presented in order to ensure also asymptotic stabilizability. In this paper we extend these results by showing that the above-mentioned condition is not only sufficient, but also necessary. And, more importantly, we show that no additional assumption is needed to ensure asymptotic stabilizability.
Keywords: underactuated systems, Hamiltonian systems, asymptotic stability, Lyapunov functions.
@article{ND_2019_15_3_a8,
     author = {S. D. Grillo and L. M. Salomone and M. Zuccalli},
     title = {Asymptotic {Stabilizability} of {Underactuated} {Hamiltonian} {Systems} {With} {Two} {Degrees} of {Freedom}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {309--326},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a8/}
}
TY  - JOUR
AU  - S. D. Grillo
AU  - L. M. Salomone
AU  - M. Zuccalli
TI  - Asymptotic Stabilizability of Underactuated Hamiltonian Systems With Two Degrees of Freedom
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 309
EP  - 326
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a8/
LA  - ru
ID  - ND_2019_15_3_a8
ER  - 
%0 Journal Article
%A S. D. Grillo
%A L. M. Salomone
%A M. Zuccalli
%T Asymptotic Stabilizability of Underactuated Hamiltonian Systems With Two Degrees of Freedom
%J Russian journal of nonlinear dynamics
%D 2019
%P 309-326
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_3_a8/
%G ru
%F ND_2019_15_3_a8
S. D. Grillo; L. M. Salomone; M. Zuccalli. Asymptotic Stabilizability of Underactuated Hamiltonian Systems With Two Degrees of Freedom. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 309-326. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a8/

[1] Auckly, D., Kapitanski, L., and White, W., “Control of Nonlinear Underactuated Systems”, Comm. Pure Appl. Math., 53:3 (2000), 354–369 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[2] Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E., and Sánchez de Alvarez, G., “Stabilization of Rigid Body Dynamics by Internal and External Torques”, Automatica, 28:4 (1992), 745–756 | DOI | MR | Zbl

[3] Bloch, A. M., Leonard, N. E., and Marsden, J. E., “Stabilization of Mechanical Systems Using Controlled Lagrangians”, Proc. of the 36th IEEE Conf. on Decision and Control, 1997, 2356–2361 | MR

[4] Bloch, A. M., Leonard, N. E., and Marsden, J. E., “Controlled Lagrangians and the Stabilization of Mechanical Systems: 1. The First Matching Theorem”, IEEE Trans. Automat. Contr., 45:12 (2000), 2253–2270 | DOI | MR | Zbl

[5] Bloch, A. M., Chang, D. E., Leonard, N. E., and Marsden, J. E., “Controlled Lagrangians and the Stabilization of Mechanical Systems: 2. Potential Shaping”, IEEE Trans. Automat. Contr., 46:10 (2001), 1556–1571 | DOI | MR | Zbl

[6] Chang, D. E., “The Method of Controlled Lagrangians: Energy Plus Force Shaping”, SIAM J. Control and Optimization, 48:8 (2010), 4821–4845 | DOI | MR | Zbl

[7] Chang, D. E., “Stabilizability of Controlled Lagrangian Systems of Two Degrees of Freedom and One Degree of Under-Actuation”, IEEE Trans. Automat. Contr., 55:8 (2010), 1888–1893 | DOI | MR | Zbl

[8] Chang, D. E., “Generalization of the IDA-PBC Method for Stabilization of Mechanical Systems”, Proc. of the 18th Mediterranean Conf. on Control Automation, 2010, 226–230

[9] Chang, D. E., “On the Method of Interconnection and Damping Assignment Passivity-Based Control for the Stabilization of Mechanical Systems”, Regul. Chaotic Dyn., 19:5 (2014), 556–575 | DOI | MR | Zbl

[10] Chang, D. E., Bloch, A. M., Leonard, N. E., Marsden, J. E., and Woolsey, C., “The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems”, ESAIM Control Optim. Calc. Var., 8 (2002), 393–422 | DOI | MR | Zbl

[11] Grillo, S., Salomone, L., and Zuccalli, M., “On the Relationship between the Energy Shaping and the Lyapunov Constraint Based Methods”, J. Geom. Mech., 9:4 (2017), 459–486 | DOI | MR | Zbl

[12] Hamberg, J., “General Matching Conditions in the Theory of Controlled Lagrangians”, Proc. of the 38th IEEE Conf. on Decision and Control (Phoenix, Ariz., 1999), v. 3, 2519–2523

[13] Khalil, H. K., Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle River, N.J., 2002, 750 pp. | Zbl

[14] Krishnaprasad, P. S., “Lie – Poisson Structures, Dual-Spin Spacecraft and Asymptotic Stability”, Nonlinear Anal., 9:10 (1985), 1011–1035 | DOI | MR | Zbl

[15] Ortega, R., Spong, M. W., Gómez-Estern, F., and Blankenstein, G., “Stabilization of a Class of Underactuated Mechanical Systems via Interconnection and Damping Assignment”, IEEE Trans. Autom. Control, 47:8 (2002), 1218–1233 | DOI | MR | Zbl

[16] van der Schaft, A. J., “Stabilization of Hamiltonian Systems”, Nonlinear Anal., 10:10 (1986), 1021–1035 | DOI | MR | Zbl

[17] Woolsey, C., Reddy, Ch. K., Bloch, A. M., Chang, D. E., Leonard, N. E., and Marsden, J. E., “Controlled Lagrangian Systems with Gyroscopic Forcing and Dissipation”, Eur. J. Control, 10:5 (2004), 478–496 | DOI | MR | Zbl