Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_3_a7, author = {I. Mukherjee and P. Guha}, title = {A {Study} of {Nonholonomic} {Deformations} of {Nonlocal} {Integrable} {Systems} {Belonging} to the {Nonlinear} {Schr\"odinger} {Family}}, journal = {Russian journal of nonlinear dynamics}, pages = {293--307}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a7/} }
TY - JOUR AU - I. Mukherjee AU - P. Guha TI - A Study of Nonholonomic Deformations of Nonlocal Integrable Systems Belonging to the Nonlinear Schrödinger Family JO - Russian journal of nonlinear dynamics PY - 2019 SP - 293 EP - 307 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a7/ LA - ru ID - ND_2019_15_3_a7 ER -
%0 Journal Article %A I. Mukherjee %A P. Guha %T A Study of Nonholonomic Deformations of Nonlocal Integrable Systems Belonging to the Nonlinear Schrödinger Family %J Russian journal of nonlinear dynamics %D 2019 %P 293-307 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2019_15_3_a7/ %G ru %F ND_2019_15_3_a7
I. Mukherjee; P. Guha. A Study of Nonholonomic Deformations of Nonlocal Integrable Systems Belonging to the Nonlinear Schrödinger Family. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 293-307. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a7/
[1] Das, A., Integrable Models, World Sci. Lecture Notes Phys., 30, World Sci., Teaneck, N.J., 1989, xiv+342 pp. | DOI | MR | Zbl
[2] Lax, P. D., “Integrals of Nonlinear Equations of Evolution and Solitary Waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl
[3] Ablowitz, M. J. and Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser., 149, Cambridge Univ. Press, Cambridge, 1991, xii+516 pp. | MR | Zbl
[4] Ablowitz, M. J., Kaup, D. J., Newell, A. C., and Segur, H., “The Inverse Scattering Transform: Fourier Analysis for Nonlinear Problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl
[5] Faddeev, L. D. and Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1987, x+592 pp. | MR | Zbl
[6] Magri, F., “A Simple Model of the Integrable Hamiltonian Equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl
[7] Malomed, B., “Nonlinear Schrödinger Equations”, Encyclopedia of Nonlinear Science, ed. A. Scott, Routledge, New York, 2005, 639–643 | MR
[8] Zhidkov, P. E., Korteweg – de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Math., 1756, Springer, Berlin, 2001, vi+147 pp. | MR
[9] Rogers, C. and Schief, W., Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge Texts Appl. Math., 30, Cambridge Univ. Press, Cambridge, 2002, 432 pp. | MR
[10] Ablowitz, M. and Musslimani, Z., “Integrable Nonlocal Nonlinear Schrödinger Equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI
[11] Guo, A., Salamo, G. J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G. A., and Christodoulides, D. N., “Observation of PT-Symmetry Breaking in Complex Optical Potentials”, Phys. Rev. Lett., 103:9 (2009), 093902, 4 pp. | DOI
[12] Regensburger, A., Bersch, C., Miri, M. A., Onishchukov, G., Christodoulides, D. N., and Peschel, U., “Parity-Time Synthetic Photonic Lattices”, Nature, 488:7410 (2012), 167–171 | DOI
[13] Rüter, Ch. E., Makris, K. G., El-Ganainy, R., Christodoulides, D. N., Segev, M., and Kip, D., “Observation of Parity-Time Symmetry in Optics”, Nature Phys., 6:3 (2010), 192–195 | DOI
[14] Fokas, A. S., Its, A. R., and Sung, L.-Y., “The Nonlinear Schrödinger Equation on the Half-Line”, Nonlinearity, 18:4 (2005), 1771–1822 | DOI | MR | Zbl
[15] Fokas, A. S., “Integrable Nonlinear Evolution Equations on the Half-Line”, Comm. Math. Phys., 230:1 (2002), 1–39 | DOI | MR | Zbl
[16] Fokas, A. S. and Its, A. R., “The Nonlinear Schrödinger Equation on the Interval”, J. Phys. A, 37:23 (2004), 6091–6114 | DOI | MR | Zbl
[17] Fokas, A. S. and Its, A. R., “The Linearization of the Initial-Boundary Value Problem of the Nonlinear Schrödinger Equation”, SIAM J. Math. Anal., 27:3 (1996), 738–764 | DOI | MR | Zbl
[18] Dokl. Akad. Nauk SSSR, 261:1 (1981), 14–18 (Russian) | MR | Zbl
[19] Ablowitz, M. J., Fokas, A. S., and Musslimani, Z. H., “On a New Nonlocal Formulation of Water Waves”, J. Fluid Mech., 562 (2006), 313–344 | DOI | MR
[20] Fokas, A. S., “Integrable Multidimensional Versions of the Nonlocal Nonlinear Schrödinger Equation”, Nonlinearity, 29:2 (2016), 319–324 | DOI | MR | Zbl
[21] Ablowitz, M. J. and Musslimani, Z. H., “Integrable Nonlocal Nonlinear Equations”, Stud. Appl. Math., 139:1 (2017), 7–59 | DOI | MR | Zbl
[22] Ablowitz, M. J. and Musslimani, Z. H., “Integrable Discrete PT Symmetric Model”, Phys. Rev. E, 90:3 (2014), 032912, 5 pp. | DOI | MR
[23] Ablowitz, M. J. and Musslimani, Z. H., “Inverse Scattering Transform for the Integrable Nonlocal Nonlinear Schrödinger Equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR | Zbl
[24] Ablowitz, M. J., Luo, X.-D., and Musslimani, Z. H., “Inverse Scattering Transform for the Nonlocal Nonlinear Schrödinger Equation with Nonzero Boundary Conditions”, J. Math. Phys., 59:1 (2018), 011501, 42 pp. | DOI | MR | Zbl
[25] Valchev, T., “On a Nonlocal Nonlinear Schrödinger Equation”, Mathematics in Industry, ed. A. Slavova, Cambridge Scholars Publ., Cambridge, 2014, 36–52
[26] Gürses, M. and Pekcan, A., “Nonlocal Nonlinear Schrödinger Equations and Their Soliton Solutions”, J. Math. Phys., 59:5 (2018), 051501, 17 pp. | DOI | MR | Zbl
[27] Gerdjikov, V. S. and Saxena, A., “Complete Integrability of Nonlocal Nonlinear Schrödinger Equation”, J. Math. Phys., 58:1 (2017), 013502, 33 pp. | DOI | MR | Zbl
[28] Bender, C. M., PT Symmetry in Quantum and Classical Physics, World Sci., Hackensack, N.J., 2019, xxii+446 pp. | MR | Zbl
[29] Bender, C. M., Introduction to PT-Symmetric Quantum Theory, 2005, 23 pp., arXiv: quant-ph/0501052
[30] Bender, C. M., “PT Symmetric Quantum Theory”, J. Phys. Conf. Ser., 631 (2015), 012002, 12 pp. | DOI
[31] Karasu-Kalkanli, A., Karasu, A., Sakovich, A., Sakovich, S., and Turhan, R., “A New Integrable Generalization of the Korteweg – de Vries Equation”, J. Math. Phys., 49:7 (2008), 073516, 10 pp. | DOI | MR | Zbl
[32] Kuperschmidt, B. A., “KdV6: An Integrable System”, Phys. Lett. A, 372:15 (2008), 2634–2639 | DOI | MR
[33] Kundu, A., “Exact Accelerating Solitons in Nonholonomic Deformation of the KdV Equation with Two-Fold Integrable Hierarchy”, J. Phys. A, 41:49 (2008), 495201, 7 pp. | DOI | MR | Zbl
[34] Kundu, A., Sahadevan, R., and Nalinidevi, L., “Nonholonomic Deformation of KdV and mKdV Equations and Their Symmetries, Hierarchies and Integrability”, J. Phys. A, 42:11 (2009), 115213, 13 pp. | DOI | MR | Zbl
[35] Kundu, A., “Two-Fold Integrable Hierarchy of Nonholonomic Deformation of the Derivative Nonlinear Schrödinger and the Lenells – Fokas Equation”, J. Math. Phys., 51:2 (2010), 022901, 17 pp. | DOI | MR | Zbl
[36] Guha, P., “Nonholonomic Deformation of Generalized KdV-Type Equations”, J. Phys. A, 42:34 (2009), 345201, 17 pp. | DOI | MR | Zbl
[37] Guha, P., “Nonholonomic Deformation of Coupled and Supersymmetric KdV Equations and Euler – Poincaré – Suslov Method”, Rev. Math. Phys., 27:4 (2015), ID 1550011-25 | DOI | MR | Zbl
[38] Abhinav, K., Guha, P., and Mukherjee, I., “Study of Quasi-Integrable and Non-Holonomic Deformation of Equations in the NLS and DNLS Hierarchy”, J. Math. Phys., 59:10 (2018), 101507, 18 pp. | DOI | MR | Zbl
[39] Fokas, A. S. and Pelloni, B., “A Transform Method for Evolution PDEs on the Interval”, IMA J. Appll. Math., 70:4 (2005), 564–587 | DOI | MR | Zbl
[40] Fokas, A. S. and Pelloni, B., Unified Transform for Boundary Value Problems: Applications and Advances, SIAM, Philadelphia, Pa., 2014, 305 pp. | MR
[41] Krupková, O., “Mechanical Systems with Nonholonomic Constraints”, J. Math. Phys., 38:10 (1997), 5098–5126 | DOI | MR | Zbl
[42] Ferreira, L. A. and Zakrzewski, W. J., “The Concept of Quasi-Integrability: A Concrete Example”, J. High Energy Phys., 2011, no. 5, 130, 39 pp. | DOI | MR | Zbl
[43] Blas, H. and Zambrano, M., “Quasi-Integrability in the Modified Defocusing Non-Linear Schrödinger Model and Dark Solitons”, J. High Energy Phys., 2016, no. 3, 005, front matter + , 47 pp. | MR
[44] Ablowitz, M. J., Chakravarty, S., and Takhtajan, L. A., “A Self-Dual Yang – Mills Hierarchy and Its Reductions to Integrable Systems in $1+1$ and $2+1$ Dimensions”, Comm. Math. Phys., 158:2 (1993), 289–314 | DOI | MR | Zbl
[45] Ablowitz, M. J., Chakravarty, S., and Halburd, R. G., “Integrable Systems and Reductions of the Self-Dual Yang – Mills Equations: Integrability, Topological Solitons and Beyond”, J. Math. Phys., 44:8 (2003), 3147–3173 | DOI | MR | Zbl
[46] Ablowitz, M. J. and Musslimani, Z. H., Integrable Nonlocal Asymptotic Reductions of Physically Significant Nonlinear Equations, 2019, 9 pp., arXiv: 1903.06752 [nlin.SI] | MR | Zbl
[47] Mukherjee, I., Guha, P., and Abhinav, K., Studies on Different Aspects of Nonlocal Integrable Systems: Soliton Solutions, Deformations and Reductions from SDYM Equations (to appear)