Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_3_a4, author = {K. G. Shvarts}, title = {Advective {Flow} of a {Rotating} {Fluid} {Layer} in a {Vibrational} {Field}}, journal = {Russian journal of nonlinear dynamics}, pages = {261--270}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a4/} }
K. G. Shvarts. Advective Flow of a Rotating Fluid Layer in a Vibrational Field. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 261-270. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a4/
[1] Andreev, V. K., The Birikh Solution of the Convection Equations and Some Its Generalizations, Preprint No. 1-10, Inst. Comput. Math. SB RAS, Krasnoyarsk, 2010, 66 pp. (Russian) | Zbl
[2] Anisimov, I. A. and Birikh, R. V., “Hydrodynamic Instability of Vibration Advective Flow in Microgravity”, Vibrational Effects in Hydrodynamics, v. 1, ed. D. V. Lyubimov, Perm. Gos. Univ., Perm, 1998, 17–24 (Russian)
[3] Teoret. Osnovy Khim. Tekhnolog., 50:3 (2016), 294–301 (Russian) | DOI
[4] Aristov, S. N. and Schwarz, K. G., Vortex Flows of Advective Nature in a Rotating Fluid Layer, Perm. Gos. Univ., Perm, 2006, 154 pp. (Russian)
[5] Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 34:4 (1999), 3–11 (Russian) | MR | Zbl
[6] Bardin, B. S. and Panev, A. S., “On the Motion of a Body with a Moving Internal Mass on a Rough Horizontal Plane”, Russian J. Nonlinear Dyn., 14:4 (2018), 519–542 | MR | Zbl
[7] Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 1998, no. 1, 16–22 (Russian) | DOI | MR | Zbl
[8] Birikh, R. V. and Katanova, T. N., “On Stabilization of Advective Flow by Transverse Vibrations”, Vibrational Effects in Hydrodynamics, v. 1, ed. D. V. Lyubimov, Perm. Gos. Univ., Perm, 1998, 25–37 (Russian)
[9] Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1990, no. 4, 12–15 (Russian) | DOI
[10] Borisov, A. V. and Mamaev, I. S., “Isomorphisms of Geodesic Flows on Quadrics”, Regul. Chaotic Dyn., 14:4–5 (2009), 455–465 | DOI | MR | Zbl
[11] Inzh.-Fiz. Zh., 56:2 (1989), 238–242 (Russian) | DOI
[12] Gershuni, G. Z. and Zhukhovitskii, E. M., Convective Stability of Incompressible Liquid, Wiley, Jerusalem, 1976, 330 pp.
[13] Gershuni, G. Z., Zhukhovitskii, E. M., and Nepomnyashchii, A. A., Stability of Convective Flows, Nauka, Moscow, 1989, 320 pp. (Russian) | MR | Zbl
[14] Gershuni, G. Z. and Lyubimov, D. V., Thermal Vibrational Convection, Wiley, New York, 1998, 372 pp.
[15] Hudoba, A., Molokov, S., Aleksandrova, S., and Pedcenko, A., “Linear Stability of Buoyant Convection in a Horizontal Layer of an Electrically Conducting Fluid in moderate and High Vertical Magnetic Field”, Phys. Fluids, 28:9 (2016), 094104, 15 pp. | DOI
[16] Kaddeche, S., Henry, D., and Benhadid, H., “Magnetic Stabilization of the Buoyant Convection between Infinite Horizontal Walls with a Horizontal Temperature Gradient”, J. Fluid Mech., 480 (2003), 185–216 | DOI | MR | Zbl
[17] Ostroumov, G. A., Free Convection under the Condition of the Internal Problem, NACA-TM-1407, Rept-4281, NASA, Washington, D.C., 1958, 239 pp.