Advective Flow of a Rotating Fluid Layer in a Vibrational Field
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 261-270.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a derivation of new exact solutions to the Navier – Stokes equations in Boussinesq approximation describing two advective flows in a rotating thin horizontal fluid layer with no-slip or free boundaries in a vibrational field. The layer rotates at a constant angular velocity; the axis of rotation is aligned with the vertical axis of coordinates. The temperature is linear along the boundaries of the layer. The case of longitudinal vibration is considered. The resulting solutions are similar to those describing the advective flows in a rotating fluid layer with solid or free boundaries without vibration. In both cases, the velocity profile is antisymmetric. Thus, in particular, in the absence of rotation, the longitudinal vibration in the presence of advection can be considered as a kind of “one-dimensional” rotation. The presence of rotation initiates the vortex motion of the fluid in the layer. Longitudinal vibration has a stronger effect on the xth component of the velocity than on the yth component. At large values of the Taylor number and (or) the vibration analogue of the Rayleigh number thin boundary layers of velocity, temperature and amplitude of the pulsating velocity component arise, the thickness of which is proportional to the root of the fourth degree from the sum of these numbers.
Mots-clés : horizontal convection, exact solution.
Keywords: longitudinal vibration
@article{ND_2019_15_3_a4,
     author = {K. G. Shvarts},
     title = {Advective {Flow} of a {Rotating} {Fluid} {Layer} in a {Vibrational} {Field}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {261--270},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a4/}
}
TY  - JOUR
AU  - K. G. Shvarts
TI  - Advective Flow of a Rotating Fluid Layer in a Vibrational Field
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 261
EP  - 270
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a4/
LA  - ru
ID  - ND_2019_15_3_a4
ER  - 
%0 Journal Article
%A K. G. Shvarts
%T Advective Flow of a Rotating Fluid Layer in a Vibrational Field
%J Russian journal of nonlinear dynamics
%D 2019
%P 261-270
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_3_a4/
%G ru
%F ND_2019_15_3_a4
K. G. Shvarts. Advective Flow of a Rotating Fluid Layer in a Vibrational Field. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 261-270. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a4/

[1] Andreev, V. K., The Birikh Solution of the Convection Equations and Some Its Generalizations, Preprint No. 1-10, Inst. Comput. Math. SB RAS, Krasnoyarsk, 2010, 66 pp. (Russian) | Zbl

[2] Anisimov, I. A. and Birikh, R. V., “Hydrodynamic Instability of Vibration Advective Flow in Microgravity”, Vibrational Effects in Hydrodynamics, v. 1, ed. D. V. Lyubimov, Perm. Gos. Univ., Perm, 1998, 17–24 (Russian)

[3] Teoret. Osnovy Khim. Tekhnolog., 50:3 (2016), 294–301 (Russian) | DOI

[4] Aristov, S. N. and Schwarz, K. G., Vortex Flows of Advective Nature in a Rotating Fluid Layer, Perm. Gos. Univ., Perm, 2006, 154 pp. (Russian)

[5] Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 34:4 (1999), 3–11 (Russian) | MR | Zbl

[6] Bardin, B. S. and Panev, A. S., “On the Motion of a Body with a Moving Internal Mass on a Rough Horizontal Plane”, Russian J. Nonlinear Dyn., 14:4 (2018), 519–542 | MR | Zbl

[7] Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 1998, no. 1, 16–22 (Russian) | DOI | MR | Zbl

[8] Birikh, R. V. and Katanova, T. N., “On Stabilization of Advective Flow by Transverse Vibrations”, Vibrational Effects in Hydrodynamics, v. 1, ed. D. V. Lyubimov, Perm. Gos. Univ., Perm, 1998, 25–37 (Russian)

[9] Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1990, no. 4, 12–15 (Russian) | DOI

[10] Borisov, A. V. and Mamaev, I. S., “Isomorphisms of Geodesic Flows on Quadrics”, Regul. Chaotic Dyn., 14:4–5 (2009), 455–465 | DOI | MR | Zbl

[11] Inzh.-Fiz. Zh., 56:2 (1989), 238–242 (Russian) | DOI

[12] Gershuni, G. Z. and Zhukhovitskii, E. M., Convective Stability of Incompressible Liquid, Wiley, Jerusalem, 1976, 330 pp.

[13] Gershuni, G. Z., Zhukhovitskii, E. M., and Nepomnyashchii, A. A., Stability of Convective Flows, Nauka, Moscow, 1989, 320 pp. (Russian) | MR | Zbl

[14] Gershuni, G. Z. and Lyubimov, D. V., Thermal Vibrational Convection, Wiley, New York, 1998, 372 pp.

[15] Hudoba, A., Molokov, S., Aleksandrova, S., and Pedcenko, A., “Linear Stability of Buoyant Convection in a Horizontal Layer of an Electrically Conducting Fluid in moderate and High Vertical Magnetic Field”, Phys. Fluids, 28:9 (2016), 094104, 15 pp. | DOI

[16] Kaddeche, S., Henry, D., and Benhadid, H., “Magnetic Stabilization of the Buoyant Convection between Infinite Horizontal Walls with a Horizontal Temperature Gradient”, J. Fluid Mech., 480 (2003), 185–216 | DOI | MR | Zbl

[17] Ostroumov, G. A., Free Convection under the Condition of the Internal Problem, NACA-TM-1407, Rept-4281, NASA, Washington, D.C., 1958, 239 pp.