Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_3_a2, author = {L. I. Mogilevich and S. V. Ivanov}, title = {The {Study} of {Wave} {Propagation} in a {Shell} with {Soft} {Nonlinearity} and with a {Viscous} {Liquid} {Inside}}, journal = {Russian journal of nonlinear dynamics}, pages = {233--250}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a2/} }
TY - JOUR AU - L. I. Mogilevich AU - S. V. Ivanov TI - The Study of Wave Propagation in a Shell with Soft Nonlinearity and with a Viscous Liquid Inside JO - Russian journal of nonlinear dynamics PY - 2019 SP - 233 EP - 250 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a2/ LA - ru ID - ND_2019_15_3_a2 ER -
%0 Journal Article %A L. I. Mogilevich %A S. V. Ivanov %T The Study of Wave Propagation in a Shell with Soft Nonlinearity and with a Viscous Liquid Inside %J Russian journal of nonlinear dynamics %D 2019 %P 233-250 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2019_15_3_a2/ %G ru %F ND_2019_15_3_a2
L. I. Mogilevich; S. V. Ivanov. The Study of Wave Propagation in a Shell with Soft Nonlinearity and with a Viscous Liquid Inside. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 233-250. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a2/
[1] Samarskii, A. A. and Mikhailov, A. P., Principles of Mathematical Modelling: Ideas, Methods, Examples, Numerical Insights, 3, CRC, Boca Raton, Fla., 2002, 360 pp. | MR
[2] Ilyushin, A. A., Continuum Mechanics, 3rd ed., MGU, Moscow, 1990, 310 pp. (Russian)
[3] Kauderer, H., Nichtlineare Mechanik, Springer, Berlin, 1958, 700 pp. | MR | Zbl
[4] Volmir, A. S., Nonlinear Dynamics of Plates and Shells, Nauka, Moscow, 1972, 492 pp. (Russian) | MR
[5] Zemlyanukhin, A. I. and Mogilevich, L. I., Nonlinear Waves in Cylindrical Shells: Solitons, Symmetry, Evolution, SSU, Saratov, 1999, 132 pp. (Russian)
[6] Loitsyanskiy, L. G., Mechanics of Liquids and Gases, 6th ed., Begell House, New York, 1995, 971 pp. | MR
[7] Zemlyanukhin, A. I. and Mogilevich, L. I., “Nonlinear Deformation Waves in Cylindrical Shells”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 3:1 (1995), 52–58 (Russian)
[8] Akust. Zh., 48:6 (2002), 725–740 (Russian) | DOI
[9] Akust. Zh., 63:2 (2017), 145–151 (Russian) | DOI
[10] Krysko, V. A., Zhigalov, M. V., and Saltykova, O. A., “Nonlinear Dynamics of Beams of Euler – Bernoulli and Timoshenko Type”, Izv. Vyssh. Uchebn. Zaved. Mashinostr., 2008, no. 6, 7–27 (Russian)
[11] Zemlyanukhin, A. I., Bochkarev, A. V., and Mogilevich, L. I., “Solitary Longitudinal-Bending Waves in Cylindrical Shell Interacting with a Nonlinear Elastic Medium”, Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2018, no. 1(76), 47–60 (Russian) | DOI | MR
[12] Ageev, R. V., Kuznetsova, E. L., Kulikov, N. I., Mogilevich, L. I., and Popov, V. S., “Mathematical Model of Movement of a Pulsing Layer of Viscous Liquid in the Channel with an Elastic Wall”, PNRPU Mech. Bull., 2014, no. 3, 17–35 (Russian) | DOI
[13] Lekomtsev, S. V., “Finite-Element Algorithms for Calculation of Natural Vibrations of Three-Dimensional Shells”, Comput. Contin. Mech., 5:2 (2012), 233–243 (Russian) | DOI
[14] Bochkarev, S. A. and Matveenko, V. P., “Stability of Coaxial Cylindrical Shells Containing Rotating Fluid Flow”, Comput. Contin. Mech., 6:1 (2013), 94–102 (Russian) | DOI
[15] Mamaev, I. S., Tenenev, V. A., and Vetchanin, E. V., “Dynamics of a Body with a Sharp Edge in a Viscous Fluid”, Rus. J. Nonlin. Dyn., 14:4 (2018), 473–494 | MR | Zbl
[16] Borisov, A. V., Mamaev, I. S., and Vetchanin, E. V., “Self-Propulsion of a Smooth Body in a Viscous Fluid under Periodic Oscillations of a Rotor and Circulation”, Regul. Chaotic Dyn., 23:7–8 (2018), 850–874 | DOI | MR | Zbl
[17] Kuzenov, V. V. and Ryzhkov, S. V., “Approximate Method for Calculating Convective Heat Flux on the Surface of Bodies of Simple Geometric Shapes”, J. Phys. Conf. Ser., 815 (2017), 012024, 8 pp. | DOI
[18] Ryzhkov, S. V. and Kuzenov, V. V., “Analysis of the Ideal Gas Flow over Body of Basic Geometrical Shape”, Int. J. Heat Mass Transf., 132 (2019), 587–592 | DOI
[19] Vetchanin, E. V., Mamaev, I. S., and Tenenev, V. A., “The Self-Propulsion of a Body with Moving Internal Masses in a Viscous Fluid”, Regul. Chaotic Dyn., 18:1–2 (2013), 100–117 | DOI | MR | Zbl
[20] Andrejchenko, K. P. and Mogilevich, L. I., “On the Dynamics of Interaction between a Compressible Layer of a Viscous Incompressible Fluid and Elastic Walls”, Izv. Akad. Nauk. Mekh. Tverd. Tela, 1982, no. 2, 162–172 (Russian)
[21] Gerdt, V. P., Blinkov, Yu. A., and Mozzhilkin, V. V., “Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations”, SIGMA Symmetry Integrability Geom. Methods Appl., 2 (2006), 051, 26 pp. | MR | Zbl
[22] Ovcharov, A. A. and Brylev, I. S., “Mathematical Model of Deformation of Nonlinear Elastic Reinforced Conical Shells under Dynamic Loading”, Sovremennye Problemy Nauki i Obrazovaniya, 2014, no. 3, 8 pp. (Russian)
[23] Fel'dshtejn, V. A., “Elastic Plastic Deformations of a Cylindrical Shell with a Longitudinal Impact”, Waves in Inelastic Media, Akad. Nauk MSSR, Kishinev, 1970, 199–204 (Russian)