Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_3_a13, author = {O. M. Kiselev}, title = {Conditions for {Phase} {Locking} and {Dephasing} of {Autoresonant} {Pumping}}, journal = {Russian journal of nonlinear dynamics}, pages = {381--394}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a13/} }
O. M. Kiselev. Conditions for Phase Locking and Dephasing of Autoresonant Pumping. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 381-394. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a13/
[1] Veksler, V. I., “A New Method of Acceleration of Relativistic Particles”, J. Phys. USSR, 9 (1945), 153–158 | MR
[2] McMillan, E. M., “The Synchrotron: A Proposed High Energy Particle Accelerator”, Phys. Rev., 68:5–6 (1945), 143–144 | DOI
[3] Friedland, L., “Spatial Autoresonance: Enhancement of Mode Conversion due to Nonlinear Phase-Locking”, Phys. Fluids B, 4:10 (1992), 3199–3209 | DOI | MR
[4] Fajans, J. and Friedland, L., “Autoresonant (Nonstationary) Excitation of Pendulums, Plutinos, Plasmas, and Other Nonlinear Oscillators”, Am. J. Phys., 69:10 (2001), 1096–1102 | DOI
[5] Pis'ma Zh. Tekh. Fiz., 36:23 (2010), 31–38 (Russian) | DOI
[6] Friedland, L., “Autoresonance in Nonlinear Systems”, Scholarpedia, 4:1 (2009), 5473 | DOI
[7] Tr. Inst. Mat. i Mekh. UrO RAN, 13:2 (2007), 43–54 (Russian) | DOI | Zbl
[8] Uspekhi Mat. Nauk, 63:5(383) (2008), 3–72 (Russian) | DOI | DOI | MR | Zbl
[9] Glebov, S. G., Kiselev, O. M., and Tarkhanov, N. N., Nonlinear Equations with Small Parameter: Vol. 1. Oscillations and Resonances, de Gruyter Ser. Nonlinear Anal. Appl., 23/1, De Gruyter, Berlin, 2017, xviii+335 pp. | MR
[10] Kiselev, O. M., Introduction to Nonlinear Oscillations Theory, 2nd ed., KomKniga, Moscow, 2006, 208 pp.
[11] Differ. Uravn., 49:3 (2013), 279–293 (Russian) | DOI | MR | Zbl
[12] Sultanov, O. A., “Stability of Autoresonance Models Subject to Random Perturbations for Systems of Nonlinear Oscillation Equations”, Comput. Math. Math. Phys., 54:1 (2014), 59–73 | DOI | MR | Zbl
[13] Prikl. Mat. Mekh., 39:4 (1975), 621–632 (Russian) | DOI | MR
[14] Haberman, R., “Nonlinear Transition Layers — the Second Painlevé Transcendent”, Studies in Appl. Math., 57:3 (1977), 247–270 | DOI | MR | Zbl
[15] Kiselev, O. M. and Glebov, S. G., “An Asymptotic Solution Slowly Crossing the Separatrix near a Saddle-Centre Bifurcation Point”, Nonlinearity, 16:1 (2003), 327–362 | DOI | MR | Zbl
[16] Poincaré, H., Les méthodes nouvelles de la mécanique céleste, v. 3, Gauthier-Villars, Paris; Dover, New York, 1899, 430 pp. | MR
[17] Krylov, N. M. and Bogolyubov, N. N., Introduction to Non-Linear Mechanics, Princeton Univ. Press, Princeton, 1949, 106 pp. | MR
[18] Wasow, W. R., Asymptotic Expansion for Ordinary Differential Equations, Pure Appl. Math., 14, Interscience, New York, 1965, 362 pp. | MR
[19] Olver, F. W. J., Asymptotics and Special Functions. Computer Science and Applied Mathematics, Acad. Press, New York, 1974, xvi+572 pp. | MR
[20] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl
[21] Tr. Mat. Inst. Steklova, 250 (2005), 198–218 (Russian) | MR | Zbl
[22] Treschev, D. and Zubelevich, O., Introduction to the Perturbation Theory of Hamiltonian Systems, Springer, Berlin, 2010, x+211 pp. | MR | Zbl
[23] Neishtadt, A., “Averaging Method for Systems with Separatrix Crossing”, Nonlinearity, 30:7 (2017), 2871–2917 | DOI | MR | Zbl
[24] Friedland, L., “Subharmonic Autoresonance”, Phys. Rev. E, 61:4 (2000), 3732–3735 | DOI
[25] Teoret. Mat. Fiz., 133:3 (2002), 429–438 (Russian) | DOI | DOI | MR | Zbl
[26] Tr. Inst. Mat. i Mekh. UrO RAN, 9:1 (2003), 56–63 (Russian) | MR | MR | Zbl
[27] Chirikov, B. V., “Resonance Processes in Magnetic Traps”, J. Nucl. Energy: Part C, 1:4 (1960), 253–260 | DOI
[28] Chirikov, B. V., “A Universal Instability of Many-Dimensional Oscillator Systems”, Phys. Rep., 52:5 (1979), 264–379 | DOI | MR
[29] Dokl. Akad. Nauk SSSR, 125:5 (1959), 1015–1018 (Russian) | MR | Zbl
[30] Molchanov, A. M., “The Resonant Structure of the Solar System”, Icarus, 8:1–3 (1968), 203–215 | DOI
[31] Kevorkian, J., “On a Model for Reentry Roll Resonance”, SIAM J. Appl. Math., 26:3 (1974), 638–669 | DOI | Zbl
[32] Murdock, J., “Qualitative Theory of Nonlinear Resonance by Averaging and Dynamical Systems Methods”, Dynamics Reported, v. 1, eds. U. Kirchgraber, H. O Walther, Vieweg+Teubner, Wiesbaden, 1988, 91–172 | DOI | MR
[33] Kiselev, O. M. and Tarkhanov, N., “The Capture of a Particle into Resonance at Potential Hole with Dissipative Perturbation”, Chaos Solitons Fractals, 58 (2014), 27–39 | DOI | MR | Zbl
[34] Tr. Mosk. Mat. Obs., 12 (1963), 3–52 (Russian) | Zbl
[35] Kiselev, O. and Tarkhanov, N., “Scattering of Trajectories at a Separatrix under Autoresonance”, J. Math. Phys., 55:6 (2014), 063502, 24 pp. | DOI | MR | Zbl