Conditions for Phase Locking and Dephasing of Autoresonant Pumping
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 381-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of nonlinear oscillators under an external driver with slowly changing frequency and amplitude. As a result, we obtain formulas for properties of the amplitude and frequency of the driver when the autoresonant behavior of the nonlinear oscillator is observed. Also, we find the measure of autoresonant asymptotic behaviors for such a driven nonlinear oscillator.
Keywords: nonlinear oscillator, autoresonance
Mots-clés : perturbations.
@article{ND_2019_15_3_a13,
     author = {O. M. Kiselev},
     title = {Conditions for {Phase} {Locking} and {Dephasing} of {Autoresonant} {Pumping}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {381--394},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a13/}
}
TY  - JOUR
AU  - O. M. Kiselev
TI  - Conditions for Phase Locking and Dephasing of Autoresonant Pumping
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 381
EP  - 394
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a13/
LA  - ru
ID  - ND_2019_15_3_a13
ER  - 
%0 Journal Article
%A O. M. Kiselev
%T Conditions for Phase Locking and Dephasing of Autoresonant Pumping
%J Russian journal of nonlinear dynamics
%D 2019
%P 381-394
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_3_a13/
%G ru
%F ND_2019_15_3_a13
O. M. Kiselev. Conditions for Phase Locking and Dephasing of Autoresonant Pumping. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 381-394. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a13/

[1] Veksler, V. I., “A New Method of Acceleration of Relativistic Particles”, J. Phys. USSR, 9 (1945), 153–158 | MR

[2] McMillan, E. M., “The Synchrotron: A Proposed High Energy Particle Accelerator”, Phys. Rev., 68:5–6 (1945), 143–144 | DOI

[3] Friedland, L., “Spatial Autoresonance: Enhancement of Mode Conversion due to Nonlinear Phase-Locking”, Phys. Fluids B, 4:10 (1992), 3199–3209 | DOI | MR

[4] Fajans, J. and Friedland, L., “Autoresonant (Nonstationary) Excitation of Pendulums, Plutinos, Plasmas, and Other Nonlinear Oscillators”, Am. J. Phys., 69:10 (2001), 1096–1102 | DOI

[5] Pis'ma Zh. Tekh. Fiz., 36:23 (2010), 31–38 (Russian) | DOI

[6] Friedland, L., “Autoresonance in Nonlinear Systems”, Scholarpedia, 4:1 (2009), 5473 | DOI

[7] Tr. Inst. Mat. i Mekh. UrO RAN, 13:2 (2007), 43–54 (Russian) | DOI | Zbl

[8] Uspekhi Mat. Nauk, 63:5(383) (2008), 3–72 (Russian) | DOI | DOI | MR | Zbl

[9] Glebov, S. G., Kiselev, O. M., and Tarkhanov, N. N., Nonlinear Equations with Small Parameter: Vol. 1. Oscillations and Resonances, de Gruyter Ser. Nonlinear Anal. Appl., 23/1, De Gruyter, Berlin, 2017, xviii+335 pp. | MR

[10] Kiselev, O. M., Introduction to Nonlinear Oscillations Theory, 2nd ed., KomKniga, Moscow, 2006, 208 pp.

[11] Differ. Uravn., 49:3 (2013), 279–293 (Russian) | DOI | MR | Zbl

[12] Sultanov, O. A., “Stability of Autoresonance Models Subject to Random Perturbations for Systems of Nonlinear Oscillation Equations”, Comput. Math. Math. Phys., 54:1 (2014), 59–73 | DOI | MR | Zbl

[13] Prikl. Mat. Mekh., 39:4 (1975), 621–632 (Russian) | DOI | MR

[14] Haberman, R., “Nonlinear Transition Layers — the Second Painlevé Transcendent”, Studies in Appl. Math., 57:3 (1977), 247–270 | DOI | MR | Zbl

[15] Kiselev, O. M. and Glebov, S. G., “An Asymptotic Solution Slowly Crossing the Separatrix near a Saddle-Centre Bifurcation Point”, Nonlinearity, 16:1 (2003), 327–362 | DOI | MR | Zbl

[16] Poincaré, H., Les méthodes nouvelles de la mécanique céleste, v. 3, Gauthier-Villars, Paris; Dover, New York, 1899, 430 pp. | MR

[17] Krylov, N. M. and Bogolyubov, N. N., Introduction to Non-Linear Mechanics, Princeton Univ. Press, Princeton, 1949, 106 pp. | MR

[18] Wasow, W. R., Asymptotic Expansion for Ordinary Differential Equations, Pure Appl. Math., 14, Interscience, New York, 1965, 362 pp. | MR

[19] Olver, F. W. J., Asymptotics and Special Functions. Computer Science and Applied Mathematics, Acad. Press, New York, 1974, xvi+572 pp. | MR

[20] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl

[21] Tr. Mat. Inst. Steklova, 250 (2005), 198–218 (Russian) | MR | Zbl

[22] Treschev, D. and Zubelevich, O., Introduction to the Perturbation Theory of Hamiltonian Systems, Springer, Berlin, 2010, x+211 pp. | MR | Zbl

[23] Neishtadt, A., “Averaging Method for Systems with Separatrix Crossing”, Nonlinearity, 30:7 (2017), 2871–2917 | DOI | MR | Zbl

[24] Friedland, L., “Subharmonic Autoresonance”, Phys. Rev. E, 61:4 (2000), 3732–3735 | DOI

[25] Teoret. Mat. Fiz., 133:3 (2002), 429–438 (Russian) | DOI | DOI | MR | Zbl

[26] Tr. Inst. Mat. i Mekh. UrO RAN, 9:1 (2003), 56–63 (Russian) | MR | MR | Zbl

[27] Chirikov, B. V., “Resonance Processes in Magnetic Traps”, J. Nucl. Energy: Part C, 1:4 (1960), 253–260 | DOI

[28] Chirikov, B. V., “A Universal Instability of Many-Dimensional Oscillator Systems”, Phys. Rep., 52:5 (1979), 264–379 | DOI | MR

[29] Dokl. Akad. Nauk SSSR, 125:5 (1959), 1015–1018 (Russian) | MR | Zbl

[30] Molchanov, A. M., “The Resonant Structure of the Solar System”, Icarus, 8:1–3 (1968), 203–215 | DOI

[31] Kevorkian, J., “On a Model for Reentry Roll Resonance”, SIAM J. Appl. Math., 26:3 (1974), 638–669 | DOI | Zbl

[32] Murdock, J., “Qualitative Theory of Nonlinear Resonance by Averaging and Dynamical Systems Methods”, Dynamics Reported, v. 1, eds. U. Kirchgraber, H. O Walther, Vieweg+Teubner, Wiesbaden, 1988, 91–172 | DOI | MR

[33] Kiselev, O. M. and Tarkhanov, N., “The Capture of a Particle into Resonance at Potential Hole with Dissipative Perturbation”, Chaos Solitons Fractals, 58 (2014), 27–39 | DOI | MR | Zbl

[34] Tr. Mosk. Mat. Obs., 12 (1963), 3–52 (Russian) | Zbl

[35] Kiselev, O. and Tarkhanov, N., “Scattering of Trajectories at a Separatrix under Autoresonance”, J. Math. Phys., 55:6 (2014), 063502, 24 pp. | DOI | MR | Zbl