Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_3_a12, author = {A. S. Migalev and P. M. Gotovtsev}, title = {Modeling the {Learning} of a {Spiking} {Neural} {Network} with {Synaptic} {Delays}}, journal = {Russian journal of nonlinear dynamics}, pages = {365--380}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a12/} }
TY - JOUR AU - A. S. Migalev AU - P. M. Gotovtsev TI - Modeling the Learning of a Spiking Neural Network with Synaptic Delays JO - Russian journal of nonlinear dynamics PY - 2019 SP - 365 EP - 380 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a12/ LA - ru ID - ND_2019_15_3_a12 ER -
A. S. Migalev; P. M. Gotovtsev. Modeling the Learning of a Spiking Neural Network with Synaptic Delays. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 365-380. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a12/
[1] Brooks, R. A., “From Earwigs to Humans”, Robot. Auton. Syst., 20:2–4 (1997), 291–304 | DOI
[2] Brooks, R. A., Breazeal, C., Marjanović, M., Scassalatti, B. and Williamson, M. M., “The Cog Project: Building a Humanoid Robot”, Computation for Metaphors, Analogy, and Agents (CMAA, 1998), Lecture Notes in Comput. Sci., 1562, ed. Ch. L. Nehaniv, Springer, Berlin, 1999, 52–87 | DOI
[3] Adams, B., Breazeal, C., Brooks, R. A., and Scassalatti, B., “Humanoid Robots: A New Kind of Tool”, IEEE Intell. Syst., 15:4 (2000), 25–31 | DOI
[4] Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino, M., and Yoshida, C., “Cognitive Developmental Robotics: A Survey”, IEEE Trans. Auton. Mental Develop., 1:1 (2009), 12–34 | DOI | MR
[5] Kawato, M., “From “Understanding the Brain by Creating the Brain” towards Manipulative Neuroscience”, Philos. Trans. R. Soc. Lond. B Biol. Sci., 363 (2008), 2201–2214 | DOI
[6] Morimoto, J. and Kawato, M., “Creating the Brain and Interacting with the Brain: An Integrated Approach to Understanding the Brain”, J. R. Soc. Interface, 12:104 (2015), 1–15 | DOI
[7] D'Angelo, E., Mapelli, L., Casellato, C., Garrido, J. A., Luque, N., Monaco, J., Prestori, F., Pedrocchi, A., and Ros, E., “Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning”, Cerebellum, 15:2 (2016), 139–151 | DOI
[8] Casellato, C., Antonietti, A., Garrido, J. A., Ferrigno, G., D'Angelo, E., and Pedrocchi, A., “Distributed Cerebellar Plasticity Implements Generalized Multiple-Scale Memory Components in Real-Robot Sensimotor Tasks”, Front. Comput. Neuroscie., 9:24 (2015), 1–9
[9] Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.-M., “From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model”, Science, 315:5817 (2007), 1416–1420 | DOI
[10] Migalev, A. S., “Searching Algorithm for Sound Wave Transform in to Spike Sequence”, Neuroinformatics-2017: Proc. of the 19th Conf. on Artificial Neural Networks: P. 1, National Research Nuclear University MEPhI, Moscow, 2017, 60–70 (Russian)
[11] Schrauwen, B. and Van Campenhout, J., “BSA, a Fast and Accurate Spike Train Encoding Scheme”, Proc. of the Internat. Joint Conf. on Neural Networks (Portland, Ore., 2003), 2825–2830
[12] Rieke, F., Warland, D., de Ruyter van Steveninck, R. R., and Bialek, W., Spikes: Exploring the Neural Code, MIT, Cambridge, Mass., 1999, 416 pp. | MR
[13] Bialek, W., Rieke, F., de Ruyter van Steveninck, R., and Warland, D., “Reading a Neural Code”, Science, 252:5014 (1991), 1854–1857 | DOI
[14] Bialek, W. and Rieke, F., “Reliability and Information Transmission in Spiking Neurons”, Trends Neurosci., 15:11 (1992), 428–434 | DOI
[15] Gonzalez-Bellido, P. T., Peng, H., Yang, J., Georgopoulos, A. P., and Olberg, R. M., “Eight Pairs of Descending Visual Neurons in the Dragonfly Give Wing Motor Centers Accurate Population Vector of Prey Direction”, Proc. Natl. Acad. Sci. USA, 110:2 (2013), 696–701 | DOI
[16] Maas, W. and Bishop, C. M., Pulsed Neural Networks, MIT, Cambridge, Mass., 2001, 377 pp.
[17] Schwemmer, M. A., Fairhall, A. L., Denéve, S., and Shea-Brown, E. T., “Constructing Precisely Computing Networks with Biophysical Spiking Neurons”, J. Neurosci., 28:35 (2015), 10112–10134 | DOI | MR
[18] Mel, B. W., “Structural Plasticity at the Axodendritic Interface: Some Functional Implications”, Modeling Neural Development, ed. A. Van Ooyen, MIT, Cambridge, Mass., 2003, 273–290
[19] Case, R. D., Humphries, M., and Gutkin, B., “Passive Dendrites Enable Single Neurons to Compute Linearly Non-Separable Functions”, PLoS Comput. Biol., 9:2 (2013), 1–15 | MR
[20] Migliore, M., Messineo, L., and Ferrante, M., “Dendritic $I_k$ Selectivly Blocks Temporal Summation of Unsynchronized Distal Inputs in CA1 Pyramidal Neurons”, J. Comput. Neurosci., 1:16 (2004), 5–13 | DOI
[21] Sinyavskiy, O. Yu. and Kobrin, A. I., “Reinforcement Learning of a Spiking Neural Network in the Task of Control of an Agent in a Virtual Discrete Environment”, Nelin. Dinam., 7:4 (2011), 859–875 (Russian) | DOI
[22] Gerstner, W., Spiking Neuron Models: Single Neurons, Populations, Plasticity, MIT, Cambridge, Mass., 2002, 496 pp. | MR
[23] Migalev, A. S., “Application of Custom Synaptic Plasticity Model on Spiking Neural Networks”, Neuroinformatics-2018: Proc. of the 21st Internat. Conf. on Artificial Neural Networks: P. 2, National Research Nuclear University MEPhI, Moscow, 2018, 154–161 (Russian)
[24] Thiele, J. C., Bichler, O., and Dupret, A., “Event-Based, Timescale Invariant Unsupervised Online Deep Learning with STDP”, Front. Comput. Neurosci., 12 (2018), 1–13 | DOI
[25] Tavanaei, A., Masquelier, T., and Maida, A., “Representation Learning Using Event-Based STDP”, Neural Netw., 9:2 (2018), 1–15
[26] Diehl, P. U. and Cook, M., “Event-Based, Timescale Invariant Unsupervised Online Deep Learning with STDP”, Front. Comput. Neuroscie., 12 (2018), 1–13
[27] Demin, V. A. and Nekhaev, D. V., “Spiking Neural Networks Learning Based on a Neuron Activity Maximizing Principle”, Neuroinformatics-2018: Proc. of the 21st Internat. Conf. on Artificial Neural Networks: P. 2, National Research Nuclear University MEPhI, Moscow, 2018, 54–64 (Russian) | MR
[28] Demin, V. A. and Nekhaev, D. V., “Recurrent Spiking Neural Network Learning Based on a Competitive Maximization of Neuronal Activity”, Front. Neuroinform., 12 (2018), 1–13 | DOI
[29] Zappacosta, S., Mannella, F., Mirolli, M., and Baldassarre, G., “General Differential Hebbian Learning: Capturing Temporal Relations between Events in Neural Networks and the Brain”, PLoS Comput. Biol., 14:8 (2018), 1–30 | DOI
[30] Zhang, J.-C., Lau, P.-M., and Bi, G.-Q., “Gain in Sensitivity and Loss in Temporal Contrast of STDP by Dopaminergic Modulation at Hippocampal Synapses”, Proc. Natl. Acad. Sci. USA, 106:31 (2009), 13028–13033 | DOI
[31] Izhikevich, E. M., “Solving the Distal Reward Problem through Linkage of STDP and Dopamine Signaling”, Cereb. Cortex, 17:10 (2007), 2443–2452 | DOI
[32] Kuśmierz, Ł., Isomura, T., and Toyoizumi, T., “Learning with Three Factors: Modulating Hebbian Plasticity with Errors”, Curr. Opin. Neurobiol., 2017, no. 46, 170–177
[33] Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D., and Brea, J., “Eligibility Traces and Plasticity on Behavioral Time Scales: Experimental Support of NeoHebbian Three-Factor Learning Rules”, Front. Neural Circuits, 12 (2018), 053, 16 pp. | DOI
[34] Cui, Y., Paillé, V., Xu, H., Genet, S., Delord, B., Fino, E., Berry, H., and Venance, L., “Endocannabinoids Mediate Bidirectional Striatal Spike-Timing-Dependent Plasticity”, J. Physiol., 593:13 (2018), 2833–2849 | DOI
[35] Quartz, S. R., “Modeling the Neural Basis of Cognitive Development”, Modeling Neural Development, ed. A. Van Ooyen, MIT, Cambridge, Mass., 2003, 291–313
[36] Izhikevich, E. M., “Polychronization: Computation with Spikes”, Neural Comput., 18:2 (2006), 245–282 | DOI | MR | Zbl