Vibrational Stability of Periodic Solutions of the Liouville Equations
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 351-363.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamics of a body with a fixed point, variable moments of inertia and internal rotors are considered. A stability analysis of permanent rotations and periodic solutions of the system is carried out. In some simplest cases the stability analysis is reduced to investigating the stability of the zero solution of Hill’s equation. It is shown that by periodically changing the moments of inertia it is possible to stabilize unstable permanent rotations of the system. In addition, stable dynamical regimes can lose stability due to a parametric resonance. It is shown that, as the oscillation frequency of the moments of inertia increases, the dynamics of the system becomes close to an integrable one.
Mots-clés : Liouville equations, Euler – Poisson equations, Mathieu equation
Keywords: Hill’s equation, parametric resonance, vibrostabilization, Euler – Poinsot case, Joukowski – Volterra case.
@article{ND_2019_15_3_a11,
     author = {E. V. Vetchanin and E. A. Mikishanina},
     title = {Vibrational {Stability} of {Periodic} {Solutions} of the {Liouville} {Equations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {351--363},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a11/}
}
TY  - JOUR
AU  - E. V. Vetchanin
AU  - E. A. Mikishanina
TI  - Vibrational Stability of Periodic Solutions of the Liouville Equations
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 351
EP  - 363
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a11/
LA  - ru
ID  - ND_2019_15_3_a11
ER  - 
%0 Journal Article
%A E. V. Vetchanin
%A E. A. Mikishanina
%T Vibrational Stability of Periodic Solutions of the Liouville Equations
%J Russian journal of nonlinear dynamics
%D 2019
%P 351-363
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_3_a11/
%G ru
%F ND_2019_15_3_a11
E. V. Vetchanin; E. A. Mikishanina. Vibrational Stability of Periodic Solutions of the Liouville Equations. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 351-363. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a11/

[1] Arnold, V. I., Ordinary Differential Equations, Springer, Berlin, 2006, ii+334 pp. | MR

[2] Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., “The Chaplygin Sleigh with Friction Moving due to Periodic Oscillations of an Internal Mass”, Nonlinear Dyn., 95:1 (2019), 699–714 | DOI

[3] Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., “Chaplygin Sleigh with Periodically Oscillating Internal Mass”, Europhys. Lett., 119:6 (2017), 60008, 7 pp. | DOI | MR

[4] Bizyaev, I. A., Borisov, A. V., Kozlov, V. V., and Mamaev, I. S., “Fermi-Like Acceleration and Power-Law Energy Growth in Nonholonomic Systems”, Nonlinearity, 32:9 (2019), 3209–3233 | DOI | MR | Zbl

[5] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Exotic Dynamics of Nonholonomic Roller Racer with Periodic Control”, Regul. Chaotic Dyn., 23:7–8 (2018), 983–994 | DOI | MR | Zbl

[6] Bolsinov, A. V. and Fomenko, A. T., Integrable Hamiltonian Systems: Geometry, Topology, Classification, Chapman Hall/CRC, Boca Raton, Fla., 2004, xvi+730 pp. | MR | Zbl

[7] Borisov, A. V., “On the Liouville Problem”, Numerical Modelling in the Problems of Mechanics, Mosk. Gos. Univ., Moscow, 1991, 110–118 (Russian) | MR

[8] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Chaos in a Restricted Problem of Rotation of a Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 13:3 (2008), 221–233 | DOI | MR | Zbl

[9] Dokl. Akad. Nauk, 485:3 (2019), 285–289 (Russian) | DOI

[10] Borisov, A. V. and Kuznetsov, S. P., “Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body”, Regul. Chaotic Dyn., 23:7–8 (2018), 803–820 | DOI | MR | Zbl

[11] Borisov, A. V. and Kuznetsov, S. P., “Regular and Chaotic Motions of Chaplygin Sleigh under Periodic Pulsed Torque Impacts”, Regul. Chaotic Dyn., 21:7–8 (2016), 792–803 | DOI | MR | Zbl

[12] Borisov, A. V. and Mamaev, I. S., “Adiabatic Chaos in Rigid Body Dynamics”, Regul. Chaotic Dyn., 2:2 (1997), 65–78 (Russian) | MR | Zbl

[13] Borisov, A. V. and Mamaev, I. S., “Euler – Poisson Equations and Integrable Cases”, Regul. Chaotic Dyn., 6:3 (2001), 253–276 | DOI | MR | Zbl

[14] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian) | MR

[15] Borisov, A. V., Mamaev, I. S., and Vetchanin, E. V., “Self-Propulsion of a Smooth Body in a Viscous Fluid under Periodic Oscillations of a Rotor and Circulation”, Regul. Chaotic Dyn., 23:7–8 (2018), 850–874 | DOI | MR | Zbl

[16] Borisov, A. V., Mamaev, I. S., and Vetchanin, E. V., “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation”, Regul. Chaotic Dyn., 23:4 (2018), 480–502 | DOI | MR | Zbl

[17] Borisov, A. V. and Simakov, N. N., “A Computer “Proof” of Non-Integrability of Euler – Poisson Equations”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 1998, no. 1, 67–72 (Russian)

[18] Butikov, E. I., “Stabilization of an Inverted Pendulum (60 Years of Kapitza Pendulum)”, Komput. Instr. v Obrazov., 2010, no. 5, 39–51 (Russian)

[19] Doroshin, A. V., “Analysis of Attitude Motion Evolutions of Variable Mass Gyrostats and Coaxial Rigid Bodies System”, Internat. J. Non-Linear Mech., 45:2 (2010), 193–205 | DOI

[20] Doroshin, A. V., Regular and Chaotic Dynamics of Satellite Gyrostats under Small Perturbations, Doctoral Dissertation, Samara Natl. Res. Univ., 2019, 224 pp.

[21] Kharlamov, M. P., Topological Analysis of Integrable Problems of Rigid Body Dynamics, Leningr. Gos. Univ., Leningrad, 1988, 197 pp. (Russian) | MR

[22] Kilin, A. A. and Pivovarova, E. N., “Chaplygin Top with a Periodic Gyrostatic Moment”, Rus. J. Math. Phys., 25:4 (2018), 509–524 | DOI | MR | Zbl

[23] Iñarrea, M. and Lanchares, V., “Chaos in the Reorientation Process of a Dual-Spin Spacecraft with Time-Dependent Moments of Inertia”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:5 (2000), 997–1018 | DOI | MR

[24] Iñarrea, M., Lanchares, V., Rothos, V. M., and Salas, J. P., “Chaotic Rotations of an Asymmetric Body with Time-Dependent Moments of Inertia and Viscous Drag”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13:2 (2003), 393–409 | DOI | MR

[25] Leonard, N. E., “Periodic Forcing, Dynamics and Control of Underactuated Spacecraft and Underwater Vehicles”, Proc. of the 34th IEEE Conf. on Decision and Control (New Orleans, La., Dec 1995), 3980–3985

[26] Mamaev, I. S. and Vetchanin, E. V., “The Self-Propulsion of a Foil with a Sharp Edge in a Viscous Fluid under the Action of a Periodically Oscillating Rotor”, Regul. Chaotic Dyn., 23:7–8 (2018), 875–886 | DOI | MR | Zbl

[27] Tallapragada, P., “A Swimming Robot with an Internal Rotor As a Nonholonomic System”, American Control Conference (IEEE), 2015, 657-662

[28] Yakubovich, V. A. and Starzhinskii, V. M., Linear Differential Equations with Periodic Coefficients: In 2 Vols., Wiley, New York, 1975 | MR