Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_2_a8, author = {T. V. Medvedev and E. V. Nozdrinova and O. V. Pochinka and E. V. Shadrina}, title = {On a {Class} of {Isotopic} {Connectivity} of {Gradient-like} {Maps} of the 2-sphere with {Saddles} of {Negative} {Orientation} {Type}}, journal = {Russian journal of nonlinear dynamics}, pages = {199--211}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_2_a8/} }
TY - JOUR AU - T. V. Medvedev AU - E. V. Nozdrinova AU - O. V. Pochinka AU - E. V. Shadrina TI - On a Class of Isotopic Connectivity of Gradient-like Maps of the 2-sphere with Saddles of Negative Orientation Type JO - Russian journal of nonlinear dynamics PY - 2019 SP - 199 EP - 211 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_2_a8/ LA - ru ID - ND_2019_15_2_a8 ER -
%0 Journal Article %A T. V. Medvedev %A E. V. Nozdrinova %A O. V. Pochinka %A E. V. Shadrina %T On a Class of Isotopic Connectivity of Gradient-like Maps of the 2-sphere with Saddles of Negative Orientation Type %J Russian journal of nonlinear dynamics %D 2019 %P 199-211 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2019_15_2_a8/ %G ru %F ND_2019_15_2_a8
T. V. Medvedev; E. V. Nozdrinova; O. V. Pochinka; E. V. Shadrina. On a Class of Isotopic Connectivity of Gradient-like Maps of the 2-sphere with Saddles of Negative Orientation Type. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 199-211. http://geodesic.mathdoc.fr/item/ND_2019_15_2_a8/
[1] Newhouse, S., Palis, J., and Takens, F., “Stable Arcs of Diffeomorphisms”, Bull. Amer. Math. Soc., 82:3 (1976), 499–502 | DOI | MR | Zbl
[2] Newhouse, S. and Peixoto, M. M., “There Is a Simple Arc Joining Any Two Morse – Smale Flows”, Trois études en dynamique qualitative, Astérisque, 31, Soc. Math. France, Paris, 1976, 15–41 | MR
[3] Nozdrinova, E. V., “Rotation Number As a Complete Topological Invariant of a Simple Isotopic Class of Rough Transformations of a Circle”, Russian J. Nonlinear Dyn., 14:4 (2018), 543–551 | MR
[4] Blanchard, P. R., “Invariants of the NPT Isotopy Classes of Morse – Smale Diffeomorphisms of Surfaces”, Duke Math. J., 47:1 (1980), 33–46 | DOI | MR | Zbl
[5] Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on $2$- and $3$-Manifolds, Dev. Math., 46, Springer, New York, 2016, XXVI, 295 pp. | MR | Zbl
[6] von Kerékjártó, B., “Über die periodischen Transformationen der Kreisscheibe und der Kugelflache”, Math. Ann., 80:1 (1919), 36–38 | DOI | MR | Zbl
[7] Newhouse, S., Palis, J., and Takens, F., “Bifurcations and Stability of Families of Diffeomorphisms”, Inst. Hautes Études Sci. Publ. Math., 1983, no. 57, 5–71 | DOI | MR | Zbl
[8] Milnor, J., Lectures on the $h$-Cobordism Theorem, Princeton Univ. Press, Princeton, N.J., 1965, v+116 pp. | MR | Zbl
[9] Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp. | MR | Zbl
[10] Rolfsen, D., Knots and Links, Math. Lect. Ser., 7, Publish or Perish, Inc., Berkeley, Calif., 1976 | MR | Zbl
[11] Banyaga, A., “On the Structure of the Group of Equivariant Diffeomorphisms”, Topology, 16:3 (1977), 279–283 | DOI | MR | Zbl