Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_2_a0, author = {S. P. Kuznetsov}, title = {Generation of {Robust} {Hyperbolic} {Chaos} in {CNN}}, journal = {Russian journal of nonlinear dynamics}, pages = {109--124}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_2_a0/} }
S. P. Kuznetsov. Generation of Robust Hyperbolic Chaos in CNN. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 109-124. http://geodesic.mathdoc.fr/item/ND_2019_15_2_a0/
[1] Chua, L. O. and Yang, L., “Cellular Neural Networks: Theory”, IEEE Trans. Circuits Syst., 35:10 (1988), 1257–1272 | DOI | MR | Zbl
[2] Chua, L. O. and Roska, T., “The CNN Paradigm”, IEEE Trans. Circuits Syst. I, 40:3 (1993), 147–156 | DOI | Zbl
[3] Cimagalli, V., Balsi, M., and Caianiello, E., “Cellular Neural Networks: A Review”, Neural Nets WIRN Vietri'93: Proc. of 6th Italian Workshop (Salerno, 1993), World Sci., ed. E. R. Caianiello, 1993, 55–84 | MR
[4] Chua, L. O. and Yang, L., “Cellular Neural Networks: Applications”, IEEE Trans. Circuits Syst., 35:10 (1988), 1273–1290 | DOI | MR
[5] Chua, L. O., Hasler, M., Moschytz, G. S., and Neirynck, J., “Autonomous Cellular Neural Networks: A Unified Paradigm for Pattern Formation and Active Wave Propagation”, IEEE Trans. Circuits Syst. I, 42:10 (1995), 559–577 | DOI | MR
[6] Hunt, K. J., Sbarbaro, D., Żbikowski, R., and Gawthrop, P. J., “Neural Networks for Control Systems: A Survey”, Automatica, 28:6 (1992), 1083–1112 | DOI | MR | Zbl
[7] Chua, L. O. and Roska, T., Cellular Neural Networks and Visual Computing: Foundations and Applications, Cambridge Univ. Press, Cambridge, 2002, 410 pp.
[8] Shi, B. and Luo, T., “Spatial Pattern Formation via Reaction-Diffusion Dynamics in $32 \times 32 \times 4$ CNN Chip”, IEEE Trans. Circuits Syst. I, 51:5 (2004), 939–947 | DOI
[9] Gollas, F. and Tetzlaff, R., “Modeling Complex Systems by Reaction-Diffusion Cellular Nonlinear Networks with Polynomial Weight-Functions”, 9th Internat. Workshop on Cellular Neural Networks and Their Applications (Taiwan, 2005), 227–231
[10] Pivka, L., “Autowaves and Spatio-Temporal Chaos in CNNs: 1. A Tutorial”, IEEE Trans. Circuits Syst. I, 42:10 (1995), 638–649 | DOI
[11] Chaotic Electronics in Telecommunications, eds. M. Kennedy, G. Setti, R. Rovatti, CRC, Boca Raton, Fla., 2000, 464 pp.
[12] Cuomo, K. M. and Oppenheim, A. V., “Circuit Implementation of Synchronized Chaos with Applications to Communications”, Phys. Rev. Lett., 71:1 (1993), 65–68 | DOI
[13] Dmitriev, A. S., Panas, A. I., and Starkov, S. O., “Experiments on Speech and Music Signals Transmission Using Chaos”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5:4 (1995), 1249–1254 | DOI | Zbl
[14] Bollt, E. M., “Review of Chaos Communication by Feedback Control of Symbolic Dynamics”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13:2 (2003), 269–285 | DOI | MR | Zbl
[15] Baptista, M. S., “Cryptography with Chaos”, Phys. Lett. A, 240:1–2 (1998), 50–54 | DOI | MR | Zbl
[16] Kocarev, L., “Chaos-Based Cryptography: A Brief Overview”, IEEE Circuits Syst. Mag., 1:3 (2001), 6–21 | DOI
[17] Dachselt, F. and Schwarz, W., “Chaos and Cryptography”, IEEE Trans. Circuits Syst. I, 48:12 (2001), 1498–1509 | DOI | MR | Zbl
[18] Stojanovski, T. and Kocarev, L., “Chaos-Based Random Number Generators: Part 1. Analysis [Cryptography]”, IEEE Trans. Circuits Syst. I, 48:3 (2001), 281–288 | DOI | MR | Zbl
[19] Stojanovski, T., Pihl, J., and Kocarev, L., “Chaos-Based Random Number Generators: Part 2. Practical Realization”, IEEE Trans. Circuits Syst. I, 48:3 (2001), 382–385 | DOI | MR | Zbl
[20] Bakiri, M., Guyeux, C., Couchot, J. F., and Oudjida, A. K., “Survey on Hardware Implementation of Random Number Generators on FPGA: Theory and Experimental Analyses”, Comput. Sci. Rev., 27 (2018), 135–153 | DOI | MR | Zbl
[21] Verschaffelt, G., Khoder, M., and Van der Sande, G., “Random Number Generator Based on an Integrated Laser with On-Chip Optical Feedback”, Chaos, 27:11 (2017), 114310, 7 pp. | DOI
[22] Harman, S. A., Fenwick, A. J., and Williams, C., “Chaotic Signals in Radar?”, Proc. of the 3rd European Radar Conference IEEE (Manchester, September 2006), 49–52
[23] Liu, Z., Zhu, X., Hu, W., and Jiang, F., “Principles of Chaotic Signal Radar”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17:5 (2007), 1735–1739 | DOI | Zbl
[24] Willsey, M. S., Cuomo, K. M., and Oppenheim, A. V., “Selecting the Lorenz Parameters for Wideband Radar Waveform Generation”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21:9 (2011), 2539–2545 | DOI | Zbl
[25] Banerjee, S., Yorke, J. A., and Grebogi, C., “Robust Chaos”, Phys. Rev. Lett., 80:14 (1998), 3049–3052 | DOI | MR | Zbl
[26] Potapov, A. and Ali, M. K., “Robust Chaos in Neural Networks”, Phys. Lett. A, 277:6 (2000), 310–322 | DOI | MR | Zbl
[27] Elhadj, Z. and Sprott, J. C., “On the Robustness of Chaos in Dynamical Systems: Theories and Applications”, Front. Phys. China, 3:2 (2008), 195–204 | DOI
[28] Elhadj, Z. and Sprott, J. C., Robust Chaos and Its Applications, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 79, World Sci., Hackensack, N.J., 2011, 472 pp. | MR
[29] Gusso, A., Dantas, W. G., and Ujevic, S., “Prediction of Robust Chaos in Micro and Nanoresonators under Two-Frequency Excitation”, Chaos, 29:3 (2019), 033112 | DOI | MR
[30] Shilnikov, L., “Mathematical Problems of Nonlinear Dynamics: A Tutorial”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7:9 (1997), 1953–2001 | DOI | MR | Zbl
[31] Botella-Soler, V., Castelo, J. M., Oteo, J. A., and Ros, J., “Bifurcations in the Lozi Map”, J. Phys. A, 44:30 (2011), 305101, 14 pp. | DOI | MR | Zbl
[32] Elhadj, Z., Lozi Mappings: Theory and Applications, CRC, Boca Raton, Fla., 2013, 338 pp. | MR
[33] Belykh, V. N. and Belykh, I., “Belykh Map”, Scholarpedia, 6:10 (2011), 5545 | DOI
[34] 2017, arXiv: (English) 1710.07828 [nlin.CD] | MR
[35] Anosov, D. V., “Dynamical Systems in the 1960s: The Hyperbolic Revolution”, Mathematical Events of the Twentieth Century, eds. A. A. Bolibruch, Yu. S. Osipov, Ya. G. Sinai, Springer, Berlin, 2006, 1–17 | MR | Zbl
[36] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[37] Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, Encyclopaedia Math. Sci., 66, ed. D. V. Anosov, Springer, Berlin, 1995, 236 pp.
[38] Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp. | MR | Zbl
[39] Pugh, C. and Peixoto, M. M., “Structural Stability”, Scholarpedia, 3:9 (2008), 4008 | DOI
[40] Kuznetsov, S. P., “Example of a Physical System with a Hyperbolic Attractor of the Smale – Williams Type”, Phys. Rev. Lett., 95:14 (2005), 144101, 4 pp. | DOI
[41] Kuznetsov, S. P. and Pikovsky, A., “Autonomous Coupled Oscillators with Hyperbolic Strange Attractors”, Phys. D, 232:2 (2007), 87–102 | DOI | MR | Zbl
[42] Wilczak, D., “Uniformly Hyperbolic Attractor of the Smale – Williams Type for a Poincaré Map in the Kuznetsov System: With Online Multimedia Enhancements”, SIAM J. Appl. Dyn. Syst., 9:4 (2010), 1263–1283 | DOI | MR | Zbl
[43] Uspekhi Fiz. Nauk, 181:2 (2011), 121–149 (Russian) | DOI | DOI
[44] Kuznetsov, S. P., Hyperbolic Chaos: A Physicist's View, Springer, Berlin, 2012, 336 pp. | Zbl
[45] Zh. Èksper. Teoret. Fiz., 129:2 (2006), 400–412 (Russain) | DOI | MR
[46] Pisma Zh. Tekh. Fiz., 34:18 (2008), 1–8 (Russian) | DOI
[47] Kuznetsov, S. P., Ponomarenko, V. I., and Seleznev, E. P., “Autonomous System Generating Hyperbolic Chaos: Circuit Simulation and Experiment”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 21:5 (2013), 17–30 (Russian)
[48] Isaeva, O. B., Kuznetsov, S. P., Sataev, I. R., Savin, D. V., and Seleznev, E. P., “Hyperbolic Chaos and Other Phenomena of Complex Dynamics Depending on Parameters in a Nonautonomous System of Two Alternately Activated Oscillators”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:12 (2015), 1530033, 15 pp. | DOI | MR | Zbl
[49] Kuptsov, P. V., Kuznetsov, S. P., and Pikovsky, A., “Hyperbolic Chaos of Turing Patterns”, Phys. Rev. Lett., 108:19 (2012), 194101, 4 pp. | DOI
[50] Isaeva, O. B., Kuznetsov, A. S., and Kuznetsov, S. P., “Hyperbolic Chaos of Standing Wave Patterns Generated Parametrically by a Modulated Pump Source”, Phys. Rev. E, 87:4 (2013), 040901(R), 4 pp. | DOI
[51] Kruglov, V. P., Kuznetsov, S. P., and Pikovsky, A., “Attractor of Smale – Williams Type in an Autonomous Distributed System”, Regul. Chaotic Dyn., 19:4 (2014), 483–494 | DOI | MR | Zbl
[52] Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory”, Meccanica, 15:1 (1980), 9–20 | DOI | MR | Zbl
[53] Shimada, I. and Nagashima, T., “A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems”, Progr. Theoret. Phys., 61:6 (1979), 1605–1616 | DOI | MR | Zbl
[54] Pikovsky, A. and Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge Univ. Press, Cambridge, 2016, 295 pp. | MR | Zbl
[55] Kaplan, J. L. and Yorke, J. A., “Chaotic Behavior of Multidimensional Difference Equations”, Functional Differential Equations and Approximation of Fixed Points, Lecture Notes in Math., 730, eds. H.-O. Peitgen, H.-O. Walther, Springer, Berlin, 1979, 204–227 | DOI | MR
[56] Farmer, J. D., Ott, E., and Yorke, J. A., “The Dimension of Chaotic Attractors”, Phys. D, 7:1–3 (1983), 153–180 | DOI | MR | Zbl