On Poisson’s Theorem of Building First Integrals for Ordinary Differential Systems
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 87-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Hamiltonian systems with $n$ degrees of freedom. Among the general methods of integration of Hamiltonian systems, the Poisson method is of particular importance. It allows one to find the additional (third) first integral of the Hamiltonian system by two known first integrals of the Hamiltonian system. In this paper, the Poisson method of building first integrals of Hamiltonian systems by integral manifolds and partial integrals is developed. Also, the generalization of the Poisson method for general ordinary differential systems is obtained.
Keywords: Hamiltonian system, first integral, integral manifold, partial integral
Mots-clés : Poisson’s theorem, Poisson bracket.
@article{ND_2019_15_1_a8,
     author = {A. F. Pranevich},
     title = {On {Poisson{\textquoteright}s} {Theorem} of {Building} {First} {Integrals} for {Ordinary} {Differential} {Systems}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_1_a8/}
}
TY  - JOUR
AU  - A. F. Pranevich
TI  - On Poisson’s Theorem of Building First Integrals for Ordinary Differential Systems
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 87
EP  - 96
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_1_a8/
LA  - en
ID  - ND_2019_15_1_a8
ER  - 
%0 Journal Article
%A A. F. Pranevich
%T On Poisson’s Theorem of Building First Integrals for Ordinary Differential Systems
%J Russian journal of nonlinear dynamics
%D 2019
%P 87-96
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_1_a8/
%G en
%F ND_2019_15_1_a8
A. F. Pranevich. On Poisson’s Theorem of Building First Integrals for Ordinary Differential Systems. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 87-96. http://geodesic.mathdoc.fr/item/ND_2019_15_1_a8/

[1] Jacobi, C. G. J., Jacobi's Lectures on Dynamics, 2nd ed., ed. A. Clebsch, Hindustan Book Agency, New Delhi, 2009 | MR | Zbl

[2] Arnol'd, V. I., Mathematical Methods of Classical Mechanics, Grad. Texts in Math., 60, 2nd ed., Springer, New York, 1989, 529 pp. | DOI | MR

[3] Gantmacher, F. R., Lectures in Analytical Mechanics, Mir, Moscow, 1975, 264 pp.

[4] Gorbuzov, V. N., Integrals of Differential Systems, GrGU, Grodno, 2006, 447 pp. (Russian)

[5] Darboux, G., “Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré”, Bulletin des Sciences Mathématiques et Astronomiques, Sér. 2, 2:1 (1878), 60–96, 123–144, 151–200 | Zbl

[6] Poincaré, H., “Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré: 1”, Rend. Circ. Mat. Palermo, 5 (1891), 161–191 ; Poincaré, H., “Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré: 2”, Rend. Circ. Mat. Palermo, 11 (1897), 193–239 | DOI | Zbl | DOI | Zbl

[7] Hilbert's Problems, ed. P. S. Alexandrov, Nauka, Moscow, 1969, 240 pp. (Russian)

[8] Kozlov, V. V., Symmetries, Topology and Resonances in Hamiltonian Mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer, Berlin, 1996, xii+378 pp. | MR

[9] Goriely, A., Integrability and Nonintegrability of Dynamical Systems, Adv. Ser. Nonlinear Dynam., 19, World Sci., River Edge, N.J., 2001, xviii+415 pp. | DOI | MR | Zbl

[10] Borisov, A. V. and Mamaev, I. S., Modern Methods of the Theory of Integrable Systems, R Dynamics, ICS, Moscow, 2003, 296 pp. (Russian) | MR

[11] Llibre, J., “Integrability of Polynomial Differential Systems”, Handbook of Differential Equations: Ordinary differential equations, v. 1, eds. A. Cañada, P. Drábek, A. Fonda, Elsevier/North-Holland, Amsterdam, 2004, 437–532 | DOI | Zbl

[12] Pranevich, A. F., R-differentiable Integrals for Systems of Equations in Total Differentials, Lambert, Saarbrücken, 2011, 104 pp. (Russian)

[13] Zhang, X., Integrability of Dynamical Systems: Algebra and Analysis, Dev. Math., 47, Springer, Singapore, 2017, xv+380 pp. | MR | Zbl

[14] Maciejewski, A. J. and Przybylska, M., “Darboux Polynomials and First Integrals of Natural Polynomial Hamiltonian Systems”, Phys. Lett. A, 326:3–4 (2004), 219–226 | DOI | MR | Zbl

[15] Nakagawa, K., Maciejewski, A. J., and Przybylska, M., “New Integrable Hamiltonian Systems with First Integrals Quartic in Momenta”, Phys. Lett. A, 343:1–3 (2005), 171–173 | DOI | MR | Zbl

[16] Llibre, J., Stoica, Ch., and Valls, C., “Polynomial and Rational Integrability of Polynomial Hamiltonian Systems”, Electron. J. Differential Equations, 2012, no. 108, 6 pp. | MR

[17] Gorbuzov, V.N. and Pranevich, A.F., First Integrals of Ordinary Linear Differential Systems, 2012, arXiv: 1201.4141 [math.DS]

[18] Pranevich, A. F., “Poisson Theorem of Building Autonomous Integrals for Autonomous Systems of Total Differential Equations”, Problemy Fiziki, Matematiki i Tekhniki, 2016, no. 3(28), 52–57 (Russian) | Zbl

[19] Kozlov, V. V., “Linear Hamiltonian Systems: Quadratic Integrals, Singular Subspaces and Stability”, Regul. Chaotic Dyn., 23:1 (2018), 26–46 | DOI | MR | Zbl

[20] Appell, P., Traité de mécanique rationnelle, v. 2, Gauthier-Villars, Paris, 1953, 584 pp.

[21] Shul'gin, M. F., On Some Differential Equations of Analytical Dynamics and Their Integration, SAGU, Tashkent, 1958, 183 pp. (Russian)