On Poisson’s Theorem of Building First Integrals for Ordinary Differential Systems
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 87-96

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Hamiltonian systems with $n$ degrees of freedom. Among the general methods of integration of Hamiltonian systems, the Poisson method is of particular importance. It allows one to find the additional (third) first integral of the Hamiltonian system by two known first integrals of the Hamiltonian system. In this paper, the Poisson method of building first integrals of Hamiltonian systems by integral manifolds and partial integrals is developed. Also, the generalization of the Poisson method for general ordinary differential systems is obtained.
Keywords: Hamiltonian system, first integral, integral manifold, partial integral
Mots-clés : Poisson’s theorem, Poisson bracket.
@article{ND_2019_15_1_a8,
     author = {A. F. Pranevich},
     title = {On {Poisson{\textquoteright}s} {Theorem} of {Building} {First} {Integrals} for {Ordinary} {Differential} {Systems}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_1_a8/}
}
TY  - JOUR
AU  - A. F. Pranevich
TI  - On Poisson’s Theorem of Building First Integrals for Ordinary Differential Systems
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 87
EP  - 96
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_1_a8/
LA  - en
ID  - ND_2019_15_1_a8
ER  - 
%0 Journal Article
%A A. F. Pranevich
%T On Poisson’s Theorem of Building First Integrals for Ordinary Differential Systems
%J Russian journal of nonlinear dynamics
%D 2019
%P 87-96
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_1_a8/
%G en
%F ND_2019_15_1_a8
A. F. Pranevich. On Poisson’s Theorem of Building First Integrals for Ordinary Differential Systems. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 87-96. http://geodesic.mathdoc.fr/item/ND_2019_15_1_a8/