Antiquantization of the Double Confluent Heun Equation. The Teukolsky Equation
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 79-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

Different forms of the double confluent Heun equation are studied. A generalized Riemann scheme for these forms is given. An equivalent first-order system is introduced. This system can be regarded from the viewpoint of the monodromy property. A corresponding Painlevé equation is derived by means of the antiquantization procedure. It turns out to be a particular case of $P^3$. A general expression for any Painlevé equation is predicted. A particular case of the Teukolsky equation in the theory of black holes is examined. This case is related to the boundary between spherical and thyroidal geometries of a black hole. Difficulties for its antiquantization are shown.
Keywords: Teukolsky equation.
Mots-clés : Double confluent Heun equation, antiquantization, Painlevé equation $P^3$
@article{ND_2019_15_1_a7,
     author = {A. A. Salatich and S. Yu. Slavyanov},
     title = {Antiquantization of the {Double} {Confluent} {Heun} {Equation.} {The} {Teukolsky} {Equation}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {79--85},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_1_a7/}
}
TY  - JOUR
AU  - A. A. Salatich
AU  - S. Yu. Slavyanov
TI  - Antiquantization of the Double Confluent Heun Equation. The Teukolsky Equation
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 79
EP  - 85
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_1_a7/
LA  - en
ID  - ND_2019_15_1_a7
ER  - 
%0 Journal Article
%A A. A. Salatich
%A S. Yu. Slavyanov
%T Antiquantization of the Double Confluent Heun Equation. The Teukolsky Equation
%J Russian journal of nonlinear dynamics
%D 2019
%P 79-85
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_1_a7/
%G en
%F ND_2019_15_1_a7
A. A. Salatich; S. Yu. Slavyanov. Antiquantization of the Double Confluent Heun Equation. The Teukolsky Equation. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 79-85. http://geodesic.mathdoc.fr/item/ND_2019_15_1_a7/

[1] Slavyanov, S. Yu., “Painlevé Equations As Classical Analogues of Heun Equations”, J. Phys. A, 29:22 (1996), 7329–7335 | DOI | MR | Zbl

[2] Slavyanov, S. Yu. and Lay, W., Special Functions: A Unified Theory Based on Singularities, Oxford Univ. Press, Oxford, 2000, 312 pp. | MR | Zbl

[3] Teoret. Mat. Fiz., 186:1 (2016), 142–151 (Russian) | DOI | DOI | MR | Zbl

[4] Babich, M. and Slavyanov, S., “Antiquantization, Isomonodromy, and Integrability”, J. Math. Phys., 59:9 (2018), 091416, 11 pp. | DOI | MR | Zbl

[5] Staicova, D. and Fiziev, P., “The Spectrum of Electromagnetic Jets from Kerr Black Holes and Naked Singularities in the Teukolsky Perturbation Theory”, Trends in Particle Physics (Primorsko, Bulgaria, 2010)

[6] Teoret. Mat. Fiz., 179:2 (2014), 189–195 (Russian) | DOI | DOI | MR | Zbl

[7] Slavyanov, S. Yu., “Kovalevskaya's Dynamics and Schrödinger Equations of Heun Class”, Operator Methods in Ordinary and Partial Differential Equations (Stockholm, 2000), Oper. Theory Adv. Appl., 132, eds. S. Albeverio, N. Elander, W. N. Everitt, P. Kurasov, Birkhäuser, Basel, 2002, 395–402 | MR | Zbl

[8] Teukolsky, A. S., “Rotating Black Holes: Separable Wave Equations for Gravitational and Electromagnetic Perturbations”, Phys. Rev. Lett., 29:16 (1972), 1114–1118 | DOI

[9] Staicova, D. and Fiziev, P., “The Spectrum of Electromagnetic Jets from Kerr Black Holes and Naked Singularities in the Teukolsky Perturbation Theory”, Astrophys. Space Sci., 332:2 (2011), 385–401 | DOI | Zbl

[10] Casals, M. and Micchi, L. F. L., Spectroscopy of Extremal (and Near-Extremal) Kerr Black Holes, 2019, arXiv: 1901.04586 [gr-qc]

[11] London, L. and Fauchon-Jones, E., On Modeling for Kerr Black Holes: Basis Learning, QNM Frequencies, and Spherical-Spheroidal Mixing Coefficients, 2019, arXiv: 1810.03550 [gr-qc]

[12] Lay, W., Bay, K., and Slavyanov, S. Yu., “Asymptotic and Numeric Study of Eigenvalues of the Double Confluent Heun Equation”, J. Phys. A, 31:42 (1998), 8521–8531 | DOI | MR | Zbl

[13] Novaes, F. and de Cunha, B. C., Isomonodromy, Painlevé Transcendents and Scattering off of Black Holes, 2014, arXiv: 1404.5188 [hep-th] | MR