Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_1_a7, author = {A. A. Salatich and S. Yu. Slavyanov}, title = {Antiquantization of the {Double} {Confluent} {Heun} {Equation.} {The} {Teukolsky} {Equation}}, journal = {Russian journal of nonlinear dynamics}, pages = {79--85}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_1_a7/} }
TY - JOUR AU - A. A. Salatich AU - S. Yu. Slavyanov TI - Antiquantization of the Double Confluent Heun Equation. The Teukolsky Equation JO - Russian journal of nonlinear dynamics PY - 2019 SP - 79 EP - 85 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_1_a7/ LA - en ID - ND_2019_15_1_a7 ER -
A. A. Salatich; S. Yu. Slavyanov. Antiquantization of the Double Confluent Heun Equation. The Teukolsky Equation. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 79-85. http://geodesic.mathdoc.fr/item/ND_2019_15_1_a7/
[1] Slavyanov, S. Yu., “Painlevé Equations As Classical Analogues of Heun Equations”, J. Phys. A, 29:22 (1996), 7329–7335 | DOI | MR | Zbl
[2] Slavyanov, S. Yu. and Lay, W., Special Functions: A Unified Theory Based on Singularities, Oxford Univ. Press, Oxford, 2000, 312 pp. | MR | Zbl
[3] Teoret. Mat. Fiz., 186:1 (2016), 142–151 (Russian) | DOI | DOI | MR | Zbl
[4] Babich, M. and Slavyanov, S., “Antiquantization, Isomonodromy, and Integrability”, J. Math. Phys., 59:9 (2018), 091416, 11 pp. | DOI | MR | Zbl
[5] Staicova, D. and Fiziev, P., “The Spectrum of Electromagnetic Jets from Kerr Black Holes and Naked Singularities in the Teukolsky Perturbation Theory”, Trends in Particle Physics (Primorsko, Bulgaria, 2010)
[6] Teoret. Mat. Fiz., 179:2 (2014), 189–195 (Russian) | DOI | DOI | MR | Zbl
[7] Slavyanov, S. Yu., “Kovalevskaya's Dynamics and Schrödinger Equations of Heun Class”, Operator Methods in Ordinary and Partial Differential Equations (Stockholm, 2000), Oper. Theory Adv. Appl., 132, eds. S. Albeverio, N. Elander, W. N. Everitt, P. Kurasov, Birkhäuser, Basel, 2002, 395–402 | MR | Zbl
[8] Teukolsky, A. S., “Rotating Black Holes: Separable Wave Equations for Gravitational and Electromagnetic Perturbations”, Phys. Rev. Lett., 29:16 (1972), 1114–1118 | DOI
[9] Staicova, D. and Fiziev, P., “The Spectrum of Electromagnetic Jets from Kerr Black Holes and Naked Singularities in the Teukolsky Perturbation Theory”, Astrophys. Space Sci., 332:2 (2011), 385–401 | DOI | Zbl
[10] Casals, M. and Micchi, L. F. L., Spectroscopy of Extremal (and Near-Extremal) Kerr Black Holes, 2019, arXiv: 1901.04586 [gr-qc]
[11] London, L. and Fauchon-Jones, E., On Modeling for Kerr Black Holes: Basis Learning, QNM Frequencies, and Spherical-Spheroidal Mixing Coefficients, 2019, arXiv: 1810.03550 [gr-qc]
[12] Lay, W., Bay, K., and Slavyanov, S. Yu., “Asymptotic and Numeric Study of Eigenvalues of the Double Confluent Heun Equation”, J. Phys. A, 31:42 (1998), 8521–8531 | DOI | MR | Zbl
[13] Novaes, F. and de Cunha, B. C., Isomonodromy, Painlevé Transcendents and Scattering off of Black Holes, 2014, arXiv: 1404.5188 [hep-th] | MR