Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 59-66
Voir la notice de l'article provenant de la source Math-Net.Ru
A completely Liouville integrable Hamiltonian system with two degrees of freedom describing the dynamics of two vortex filaments in a Bose – Einstein condensate enclosed in a cylindrical trap is considered. For the system of two vortices with identical intensities a bifurcation of three Liouville tori into one is detected. Such a bifurcation is found in the integrable case of Goryachev – Chaplygin – Sretensky in rigid body dynamics.
Keywords:
Vortex dynamics, Bose – Einstein condensate, completely integrable Hamiltonian systems, bifurcation diagram of momentum mapping
Mots-clés : bifurcations of Liouville tori.
Mots-clés : bifurcations of Liouville tori.
@article{ND_2019_15_1_a5,
author = {P. E. Ryabov and S. V. Sokolov},
title = {Phase {Topology} of {Two} {Vortices} of {Identical} {Intensities} in a {Bose} {\textendash} {Einstein} {Condensate}},
journal = {Russian journal of nonlinear dynamics},
pages = {59--66},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2019_15_1_a5/}
}
TY - JOUR AU - P. E. Ryabov AU - S. V. Sokolov TI - Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate JO - Russian journal of nonlinear dynamics PY - 2019 SP - 59 EP - 66 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_1_a5/ LA - en ID - ND_2019_15_1_a5 ER -
P. E. Ryabov; S. V. Sokolov. Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/ND_2019_15_1_a5/