Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_1_a5, author = {P. E. Ryabov and S. V. Sokolov}, title = {Phase {Topology} of {Two} {Vortices} of {Identical} {Intensities} in a {Bose} {\textendash} {Einstein} {Condensate}}, journal = {Russian journal of nonlinear dynamics}, pages = {59--66}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_1_a5/} }
TY - JOUR AU - P. E. Ryabov AU - S. V. Sokolov TI - Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate JO - Russian journal of nonlinear dynamics PY - 2019 SP - 59 EP - 66 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_1_a5/ LA - en ID - ND_2019_15_1_a5 ER -
P. E. Ryabov; S. V. Sokolov. Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/ND_2019_15_1_a5/
[1] Fetter, A. L., “Rotating Trapped Bose – Einstein Condensates”, Rev. Mod. Phys., 81:2 (2009), 647–691 | DOI
[2] Torres, P. J., Kevrekidis, P. G., Frantzeskakis, D. J., Carretero-González, R., Schmelcher, P., and Hall, D. S., “Dynamics of Vortex Dipoles in Confined Bose – Einstein Condensates”, Phys. Lett. A, 375:33 (2011), 3044–3050 | DOI
[3] Navarro, R., Carretero-González, R., Torres, P. J., Kevrekidis, P. G., Frantzeskakis, D. J., Ray, M. W., Altuntaş, E., and Hall, D. S., “Dynamics of a Few Corotating Vortices in Bose – Einstein Condensates”, Phys. Rev. Lett., 110:22 (2013), 225301, 6 pp. | DOI
[4] Koukouloyannis, V., Voyatzis, G., and Kevrekidis, P. G., “Dynamics of Three Noncorotating Vortices in Bose – Einstein Condensates”, Phys. Rev. E, 89:4 (2014), 042905, 14 pp. | DOI
[5] Borisov, A. V. and Kilin, A. A., “Stability of Thomson's Configurations of Vortices on a Sphere”, Regul. Chaotic Dyn., 5:2 (2000), 189–200 | DOI | MR | Zbl
[6] Kilin, A. A., Borisov, A. V., and Mamaev, I. S., “The Dynamics of Point Vortices inside and outside a Circular Domain”, Basic and Applied Problems of the Theory of Vortices, eds. A. V. Borisov, I. S. Mamaev, M. A. Sokolovskiy, R Dynamics, Institute of Computer Science, Izhevsk, 2003, 414–440 (Russian) | MR
[7] Borisov, A. V., Mamaev, I. S., and Kilin, A. A., “Absolute and Relative Choreographies in the Problem of Point Vortices Moving on a Plane”, Regul. Chaotic Dyn., 9:2 (2004), 101–111 | DOI | MR | Zbl
[8] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “The Dynamics of Vortex Rings: Leapfrogging, Choreographies and the Stability Problem”, Regul. Chaotic Dyn., 18:1–2 (2013), 33–62 | DOI | MR | Zbl
[9] Mat. Zametki, 99:6 (2016), 848–854 (Russian) | DOI | DOI | MR | Zbl
[10] Sokolov, S. V. and Ryabov, P. E., “Bifurcation Analysis of the Dynamics of Two Vortices in a Bose – Einstein Condensate. The Case of Intensities of Opposite Signs”, Regul. Chaotic Dyn., 22:8 (2017), 979–998 | DOI | MR
[11] Dokl. Akad. Nauk, 480:6 (2018), 652–656 (Russian) | DOI | Zbl
[12] Ryabov, P. E., Bifurcation Diagram of One Perturbed Vortex Dynamics Problem, 2018, arXiv: 1811.10512 [nlin.SI]
[13] Ryabov, P. E., On One Unstable Bifurcation in the Dynamics of Vortex Structure, 2018, arXiv: 1812.03563 [nlin.SI]
[14] Kharlamov, M. P., Topological Analysis of Integrable Problems of Rigid Body Dynamics, Leningr. Gos. Univ., Leningrad, 1988, 197 pp. (Russian) | MR
[15] Uspekhi Mat. Nauk, 45:2(272) (1990), 49–77, 240 (Russian) | DOI | MR | Zbl
[16] Mat. Sb., 209:9 (2018), 102–127 (Russian) | DOI | DOI | MR | Zbl
[17] Kharlamov, M. P., “Extensions of the Appelrot Classes for the Generalized Gyrostat in a Double Force Field”, Regul. Chaotic Dyn., 19:2 (2014), 226–244 | DOI | MR | Zbl
[18] Uspekhi Mat. Nauk, 65:2 (2010), 71–132 (Russian) | DOI | DOI | MR | Zbl
[19] Dokl. Akad. Nauk, 479:5 (2018), 493–496 (Russian) | DOI | MR | Zbl