Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 59-66

Voir la notice de l'article provenant de la source Math-Net.Ru

A completely Liouville integrable Hamiltonian system with two degrees of freedom describing the dynamics of two vortex filaments in a Bose – Einstein condensate enclosed in a cylindrical trap is considered. For the system of two vortices with identical intensities a bifurcation of three Liouville tori into one is detected. Such a bifurcation is found in the integrable case of Goryachev – Chaplygin – Sretensky in rigid body dynamics.
Keywords: Vortex dynamics, Bose – Einstein condensate, completely integrable Hamiltonian systems, bifurcation diagram of momentum mapping
Mots-clés : bifurcations of Liouville tori.
@article{ND_2019_15_1_a5,
     author = {P. E. Ryabov and S. V. Sokolov},
     title = {Phase {Topology} of {Two} {Vortices} of {Identical} {Intensities} in a {Bose} {\textendash} {Einstein} {Condensate}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_1_a5/}
}
TY  - JOUR
AU  - P. E. Ryabov
AU  - S. V. Sokolov
TI  - Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 59
EP  - 66
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_1_a5/
LA  - en
ID  - ND_2019_15_1_a5
ER  - 
%0 Journal Article
%A P. E. Ryabov
%A S. V. Sokolov
%T Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate
%J Russian journal of nonlinear dynamics
%D 2019
%P 59-66
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_1_a5/
%G en
%F ND_2019_15_1_a5
P. E. Ryabov; S. V. Sokolov. Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/ND_2019_15_1_a5/