The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 41-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The motion of a circular cylinder in a fluid in the presence of circulation and external periodic force and torque is studied. It is shown that for a suitable choice of the frequency of external action for motion in an ideal fluid the translational velocity components of the body undergo oscillations with increasing amplitude due to resonance. During motion in a viscous fluid no resonance arises. Explicit integration of the equations of motion has shown that the unbounded propulsion of the body in a viscous fluid is impossible in the absence of external torque. In the general case, the solution of the equations is represented in the form of a multiple series.
Keywords: rigid body dynamics, ideal fluid, resonance.
Mots-clés : viscous fluid, propulsion in a fluid
@article{ND_2019_15_1_a4,
     author = {E. V. Vetchanin},
     title = {The {Motion} of a {Balanced} {Circular} {Cylinder} in an {Ideal} {Fluid} {Under} the {Action} of {External} {Periodic} {Force} and {Torque}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {41--57},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_1_a4/}
}
TY  - JOUR
AU  - E. V. Vetchanin
TI  - The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 41
EP  - 57
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_1_a4/
LA  - en
ID  - ND_2019_15_1_a4
ER  - 
%0 Journal Article
%A E. V. Vetchanin
%T The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque
%J Russian journal of nonlinear dynamics
%D 2019
%P 41-57
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_1_a4/
%G en
%F ND_2019_15_1_a4
E. V. Vetchanin. The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 41-57. http://geodesic.mathdoc.fr/item/ND_2019_15_1_a4/

[1] Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., “The Chaplygin Sleigh with Friction Moving due to Periodic Oscillations of an Internal Mass”, Nonlinear Dyn., 95:1 (2019), 699–714 | DOI

[2] Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., “Chaplygin Sleigh with Periodically Oscillating Internal Mass”, Europhys. Lett., 119:6 (2017), 60008, 7 pp. | DOI | MR

[3] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975 | DOI | MR | Zbl

[4] Borisov, A. V., Kozlov, V. V., and Mamaev, I. S., “Asymptotic Stability and Associated Problems of Dynamics of Falling Rigid Body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565 | DOI | MR | Zbl

[5] Pis'ma Zh. Tekh. Fiz., 42:17 (2016), 9–19 (Russian) | DOI

[6] Borisov, A. V. and Kuznetsov, S. P., “Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body”, Regul. Chaotic Dyn., 23:7–8 (2018), 803–820 | DOI | MR | Zbl

[7] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian) | MR

[8] Borisov, A. V. and Mamaev, I. S., “On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation”, Chaos, 16:1 (2006), 013118, 7 pp. | DOI | MR | Zbl

[9] Borisov, A. V., Mamaev, I. S., and Vetchanin, E. V., “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation”, Regul. Chaotic Dyn., 23:4 (2018), 480–502 | DOI | MR | Zbl

[10] Borisov, A. V., Mamaev, I. S., and Vetchanin, E. V., “Self-Propulsion of a Smooth Body in a Viscous Fluid under Periodic Oscillations of a Rotor and Circulation”, Regul. Chaotic Dyn., 23:7–8 (2018), 850–874 | DOI | MR | Zbl

[11] Mat. Zametki, 102:4 (2017), 503–513 (Russian) | DOI | DOI | MR | Zbl

[12] Prikl. Mat. Mekh., 45:3 (1981), 481–487 (Russian) | DOI | MR | Zbl

[13] Chaplygin, S. A., “On the Action of a Plane-Parallel Air Flow upon a Cylindrical Wing Moving within It”, The Selected Works on Wing Theory of Sergei A. Chaplygin, Garbell Research Foundation, San Francisco, 1956, 42–72 | MR

[14] Chaplygin, S. A., “Von dem Drucke eines planparallelen Stromes auf untergetauchte Körper (zur Theorie der Aeroplane)”, Mat. Sb., 28:1 (1911), 120–166 (Russian)

[15] Childress, S., Spagnolie, S. E., and Tokieda, T., “A Bug on a Raft: Recoil Locomotion in a Viscous Fluid”, J. Fluid Mech., 669 (2011), 527–556 | DOI | MR | Zbl

[16] Eldering, J., “Realizing Nonholonomic Dynamics as Limit of Friction Forces”, Regul. Chaotic Dyn., 21:4 (2016), 390–409 | DOI | MR | Zbl

[17] Prikl. Mat. Mekh., 45:1 (1981), 42–51 (Russian) | DOI | MR | Zbl

[18] Karavaev, Yu. L., Kilin, A. A., and Klekovkin, A. V., “Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot”, Regul. Chaotic Dyn., 21:7–8 (2016), 918–926 | DOI | MR | Zbl

[19] Kilin, A. A., Klenov, A. I., and Tenenev, V. A., “Controlling the Movement of the Body Using Internal Masses in a Viscous Liquid”, Computer Research and Modeling, 10:4 (2018), 445–460 (Russian) | DOI

[20] Kirchhoff, G., Vorlesungen über mathematische Physik: Vol. 1. Mechanik, Teubner, Leipzig, 1876

[21] Klenov, A. I. and Kilin, A. A., “Influence of Vortex Structures on the Controlled Motion of an Above-Water Screwless Robot”, Regul. Chaotic Dyn., 21:7–8 (2016), 927–938 | DOI | MR | Zbl

[22] Korotkin, A. I., Added Masses of Ship Structures, Fluid Mech. Appl., 88, Springer, Dordrecht, 2009

[23] Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1990, no. 1, 79–86 (Russian) | MR | Zbl

[24] Dokl. Akad. Nauk SSSR, 272:3 (1983), 550–554 (Russian) | MR | Zbl

[25] Prikl. Mat. Mekh., 65:4 (2001), 592–601 (Russian) | DOI | MR | Zbl

[26] Prikl. Mat. Mekh., 67:4 (2003), 620–633 (Russian) | DOI | MR | Zbl

[27] Kutta, W. M., “Auftriebskräfte in strömenden Flüssigkeiten”, Illustr. aeronaut. Mitteilungen, 6 (1902), 133–135

[28] Kuznetsov, S. P., “Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-Dimensional Models”, Regul. Chaotic Dyn., 20:3 (2015), 345–382 | DOI | MR | Zbl

[29] Leonard, N. E., “Periodic Forcing, Dynamics and Control of Underactuated Spacecraft and Underwater Vehicles”, Proc. of the 34th IEEE Conf. on Decision and Control (New Orleans, La., Dec 1995), 3980–3985

[30] Lighthill, M. J., “On the Squirming Motion of Nearly Spherical Deformable Bodies through Liquids at Very Small Reynolds Numbers”, Comm. Pure Appl. Math., 5:2 (1952), 109–118 | DOI | MR | Zbl

[31] Mamaev, I. S., Tenenev, V. A., and Vetchanin, E. V., “Dynamics of a Body with a Sharp Edge in a Viscous Fluid”, Rus. J. Nonlin. Dyn., 14:4 (2018), 473–494 | MR

[32] Mamaev, I. S. and Vetchanin, E. V., “The Self-Propulsion of a Foil with a Sharp Edge in a Viscous Fluid under the Action of a Periodically Oscillating Rotor”, Regul. Chaotic Dyn., 23 (2018), 7–8, 875–886 | DOI | MR

[33] Mason, R. J., Fluid Locomotion and Trajectory Planning for Shape-Changing Robots, PhD Dissertation, California Institute of Technology, Pasadena, Calif., 2003, 264 pp.

[34] Michelin, S. and Llewellyn Smith, S. G., “An Unsteady Point Vortex Method for Coupled Fluid-Solid Problems”, Theor. Comput. Fluid Dyn., 23:2 (2009), 127–153 | DOI | Zbl

[35] Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I., Integrals and Series, v. 1, Elementary Functions, Gordon Breach Sci. Publ., New York, 1986 | MR | Zbl

[36] Ramodanov, S. M. and Tenenev, V. A., “Motion of a Body with Variable Distribution of Mass in a Boundless Viscous Liquid”, Nelin. Dinam., 7:3 (2011), 635–647 (Russian) | DOI | MR

[37] Ramodanov, S. M., Tenenev, V. A., and Treschev, D. V., “Self-Propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid”, Regul. Chaotic Dyn., 17:6 (2012), 547–558 | DOI | MR | Zbl

[38] Tallapragada, Ph., “A Swimming Robot with an Internal Rotor As a Nonholonomic System”, Proc. of the American Control Conference (Chicago, Ill., USA, July 1–3, 2015), 657–662

[39] Tr. Mat. Inst. Steklova, 295 (2016), 321–351 (Russian) | DOI | MR | Zbl

[40] Vetchanin, E. V. and Kilin, A. A., “Control of Body Motion in an Ideal Fluid Using the Internal Mass and the Rotor in the Presence of Circulation around the Body”, J. Dyn. Control Syst., 23:2 (2017), 435–458 | DOI | MR | Zbl

[41] Vetchanin, E. V. and Kilin, A. A., “Control of the Motion of an Unbalanced Heavy Ellipsoid in an Ideal Fluid Using Rotors”, Nelin. Dinam., 12:4 (2016), 663–674 (Russian) | DOI | MR | Zbl

[42] Vetchanin, E. V., Kilin, A. A., and Mamaev, I. S., “Control of the Motion of a Helical Body in a Fluid Using Rotors”, Regul. Chaotic Dyn., 21:7–8 (2016), 874–884 | DOI | MR | Zbl

[43] Vetchanin, E. V. and Mamaev, I. S., “Optimal Control of the Motion of a Helical Body in a Liquid Using Rotors”, Russ. J. Math. Phys., 24:3 (2017), 399–411 | DOI | MR | Zbl

[44] Vetchanin, E. V., Mamaev, I. S., and Tenenev, V. A., “The Self-Propulsion of a Body with Moving Internal Masses in a Viscous Fluid”, Regul. Chaotic Dyn., 18:1–2 (2013), 100–117 | DOI | MR | Zbl