Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_1_a1, author = {N. A. Kudryashov}, title = {On {Integrability} of the {FitzHugh} {\textendash} {Rinzel} {Model}}, journal = {Russian journal of nonlinear dynamics}, pages = {13--19}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_1_a1/} }
N. A. Kudryashov. On Integrability of the FitzHugh – Rinzel Model. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 13-19. http://geodesic.mathdoc.fr/item/ND_2019_15_1_a1/
[1] FitzHugh, R., “Impulses and Physiological States in Theoretical Models of Nerve Membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI
[2] Nagumo, J., Arimoto, S., and Yoshizawa, S., “An Active Pulse Transmission Line Simulating Nerve Axon”, Proc. of the IRE, 50:10 (1962), 2061–2070 | DOI
[3] FitzHugh, R., “A Kinetic Model for the Conductance Changes in Nerve Membranes”, J. Cell. Comp. Physiol., 66:suppl. 2 (1965), 111–117 | DOI
[4] Hodgkin, A. L. and Huxley, A. F., “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”, J. Physiol., 117:4 (1952), 500–544 | DOI
[5] Postnikov, E. B. and Titkova, O. V., “A Correspondence between the Models of Hodgkin – Huxley and FitzHugh – Nagumo Revised”, Eur. Phys. J. Plus, 131:11 (2016), 411 | DOI
[6] Saha, A. and Feudel, U., “Extreme Events in FitzHugh – Nagumo Oscillators Coupled with Two Time Delays”, Phys. Rev. E, 95:6 (2017), 062219, 10 pp. | DOI | MR
[7] Schmidt, A., Kasmatis, Th., Hizanidas, J., Provata, A., and Hövel, P., “Chimera Patterns in Two-Dimensional Networks of Coupled Neurons”, Phys. Rev. E, 95:3 (2017), 032224, 13 pp. | DOI | MR
[8] Zemskov, E. P., Tsyganov, M. A., and Horsthemke, W., “Oscillatory Pulses and Wave Trains in a Bistable Reaction-Diffusion System with Cross Diffusion”, Phys. Rev. E, 95:1 (2017), 012203, 9 pp. | DOI | MR
[9] Scott, A., Nonlinear Science. Emergence and Dynamics of Coherent Structures, 2nd ed., Oxford Univ. Press, Oxford, 2005 | MR
[10] Kudryashov, N. A., “Asymptotic and Exact Solutions of the FitzHugh – Nagumo Model”, Regul. Chaotic Dyn., 23:2 (2018), 152–160 | DOI | MR | Zbl
[11] Kudryashov, N. A., Rybka, R. B., and Sboev, A. G., “Analytical Properties of the Perturbed FitzHugh – Nagumo Model”, Appl. Math. Lett., 76 (2018), 142–147 | DOI | MR | Zbl
[12] Llibre, J. and Vidal, C., “Periodic Solutions of a Periodic FitzHugh – Nagumo System”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:13 (2015), 1550180, 6 pp. | DOI | MR | Zbl
[13] Rinzel, J., “A Formal Classification of Bursting Mechanisms in Excitable Systems”, Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, Lecture Notes in Biomath., 71, eds. E. Teramoto, M. Yamaguti, Springer, Berlin, 1987, 267–281 | DOI | MR
[14] Izv. Vyssh. Uchebn. Zaved. Radiofizika, 49:11 (2006), 1002–1014 (Russian) | DOI
[15] Zemlyanukhin, A. I. and Bochkarev, A. V., “Analytical Properties and Solutions of the FitzHugh – Rinzel Model”, Russian J. Nonlinear Dyn., 15:1 (2019), 3–12 | MR
[16] Painlevé, P., “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25 (1902), 1–85 | DOI | MR
[17] Gambier, B., “Sur les équations différetielles dont l'integrate générale est uniforme”, C. R. Acad. Sci. Paris, 142 (1906), 266–269, 1403–1406, 1497–1500 | Zbl
[18] Kudryashov, N. A., “Amalgamations of the Painlevé Equations”, J. Math. Phys., 44:12 (2003), 6160–6178 | DOI | MR | Zbl
[19] Borisov, A. V. and Kudryashov, N. A., “Paul Painlevé and His Contribution to Science”, Regul. Chaotic Dyn., 19:1 (2014), 1–19 | DOI | MR | Zbl
[20] Kudryashov, N. A., “Higher Painlevé Transcensents As Special Solutions of Some Nonlinear Integrable Hierarchies”, Regul. Chaotic Dyn., 19:1 (2014), 48–63 | DOI | MR | Zbl
[21] Kudryashov, N. A., “Nonlinear Differential Equations Associated with the First Painlevé Hierarchy”, Appl. Math. Lett., 90 (2019), 223–228 | DOI | MR | Zbl
[22] Kudryashov, N. A., “Exact Solutions of the Equation for Surface Waves in a Convecting Fluid”, Appl. Math. Comput., 344/345 (2019), 97–106 | MR
[23] Kudryashov, N. A., “Exact Solutions and Integrability of the Duffing – van der Pol Equation”, Regul. Chaotic Dyn., 23:4 (2018), 471–479 | DOI | MR | Zbl
[24] Polyanin, A. D. and Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations, 2nd ed., Chapman Hall/CRC, Boca Raton, Fla., 2002 | MR
[25] Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations, 2nd ed., CRC, Boca Raton, Fla., 2012 | MR
[26] Polyanin, A. D. and Zaitsev, V. F., Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, Chapman Hall/CRC, Boca Raton, Fla., 2017, 1496 pp. | MR
[27] Kudryashov, N. A., “Exact Solutions of the Generalized Kuramoto – Sivashinsky Equation”, Phys. Lett. A, 147:5–6 (1990), 287–291 | DOI | MR
[28] Kudryashov, N. A., “Solitary and Periodic Solutions of the Generalized Kuramoto – Sivashinsky Equation”, Regul. Chaotic Dyn., 13:3 (2008), 234–238 | DOI | MR | Zbl
[29] Kudryashov, N. A., “One Method for Finding Exact Solutions of Nonlinear Differential Equations”, Commun. Nonlinear Sci. Numer. Simul., 17:6 (2012), 2248–2253 | DOI | MR | Zbl
[30] Kudryashov, N. A., “Polynomials in Logistic Function and Solitary Waves of Nonlinear Differential Equations”, Appl. Math. Comput., 219:17 (2013), 9245–9253 | MR | Zbl
[31] Kudryashov, N. A., “Painlevé Analysis and Exact Solutions of the Korteweg – de Vries Equation with a source”, Appl. Math. Lett., 41 (2015), 41–45 | DOI | MR | Zbl