Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_1_a0, author = {A. I. Zemlyanukhin and A. V. Bochkarev}, title = {Analytical {Properties} and {Solutions} of the {FitzHugh} {\textendash} {Rinzel} {Model}}, journal = {Russian journal of nonlinear dynamics}, pages = {3--12}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_1_a0/} }
TY - JOUR AU - A. I. Zemlyanukhin AU - A. V. Bochkarev TI - Analytical Properties and Solutions of the FitzHugh – Rinzel Model JO - Russian journal of nonlinear dynamics PY - 2019 SP - 3 EP - 12 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_1_a0/ LA - en ID - ND_2019_15_1_a0 ER -
A. I. Zemlyanukhin; A. V. Bochkarev. Analytical Properties and Solutions of the FitzHugh – Rinzel Model. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/ND_2019_15_1_a0/
[1] Hodgkin, A. L. and Huxley, A. F., “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”, J. Physiol., 117:4 (1952), 500–544 | DOI
[2] FitzHugh, R., “Impulses and Physiological States in Theoretical Models of Nerve Membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI
[3] Nagumo, J., Arimoto, S., and Yoshizawa, S., “An Active Pulse Transmission Line Simulating Nerve Axon”, Proc. of the IRE, 50:10 (1962), 2061–2070 | DOI
[4] FitzHugh, R., “A Kinetic Model for the Conductance Changes in Nerve Membranes”, J. Cell. Comp. Physiol., 66:suppl. 2 (1965), 111–117 | DOI
[5] Pis'ma v Zh. Èksper. Teoret. Fiz., 77:6 (2003), 319–325 (Russian) | DOI | MR
[6] Llibre, J. and Vidal, C., “Periodic Solutions of a Periodic FitzHugh – Nagumo System”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:13 (2015), 1550180, 6 pp. | DOI | MR | Zbl
[7] Tsuji, Sh., Ueta, T., Kawakami, H., and Aihara, K., “A Design Method of Bursting Using Two-Parameter Bifurcation Diagrams in FitzHugh – Nagumo Model”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:7 (2004), 2241–2252 | DOI | MR | Zbl
[8] Gelens, L., Anderson, G. A., and Ferrell, J. E., Jr., “Spatial Trigger Waves: Positive Feedback Gets You a Long Way”, Mol. Biol. Cell, 25:22 (2014), 3486–3493 | DOI
[9] Cheng, X., and Ferrell, J. E., Jr., “Apoptosis Propagates through the Cytoplasm As Trigger Waves”, Science, 361:6402 (2018), 607–612 | DOI
[10] Kudryashov, N. A., “Asymptotic and Exact Solutions of the FitzHugh – Nagumo Model”, Regul. Chaotic Dyn., 23:2 (2018), 152–160 | DOI | MR | Zbl
[11] Kudryashov, N. A., Rybka, R. B., and Sboev, A. G., “Analytical Properties of the Perturbed FitzHugh – Nagumo Model”, Appl. Math. Lett., 76 (2018), 142–147 | DOI | MR | Zbl
[12] Rinzel, J., “A Formal Classification of Bursting Mechanisms in Excitable Systems”, Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, Lecture Notes in Biomath., 71, eds. E. Teramoto, M. Yamaguti, Springer, Berlin, 1987, 267–281 | DOI | MR
[13] Izv. Vyssh. Uchebn. Zaved. Radiofizika, 49:11 (2006), 1002–1014 (Russian) | DOI
[14] Wojcik, J. and Shilnikov, A., Voltage Interval Mappings for an Elliptic Bursting Model, 2013, arXiv: 1310.5232 [nlin.CD] | MR
[15] Conte, R., “Singularities of Differential Equations and Integrability”, Introduction to Methods of Complex Analysis and Geometry for Classical Mechanics and Nonlinear Waves (Chamonix, 1993), eds. D. Benest, C. Froeschle, Frontières, Gif-sur-Yvette, 1994, 49–143 | MR | Zbl
[16] Weiss, J., Tabor, M., and Carnevale, G., “The Painlevé Property for Partial Differential Equations”, J. Math. Phys., 24:3 (1983), 522–526 | DOI | MR | Zbl
[17] Weiss, J., “The Painlevé Property for Partial Differential Equations: 2. Bäcklund Transformation, Lax Pairs, and the Schwarzian Derivative”, J. Math. Phys., 24:6 (1983), 1405–1413 | DOI | MR | Zbl
[18] Kudryashov, N. A., “From Singular Manifold Equations to Integrable Evolution Equations”, J. Phys. A, 27:7 (1994), 2457–2470 | DOI | MR | Zbl