Analytical Properties and Solutions of the FitzHugh – Rinzel Model
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The FitzHugh – Rinzel model is considered, which differs from the famous FitzHugh – Nagumo model by the presence of an additional superslow dependent variable. Analytical properties of this model are studied. The original system of equations is transformed into a third-order nonlinear ordinary differential equation. It is shown that, in the general case, the equation does not pass the Painlevé test, and the general solution cannot be represented by Laurent series. Using the singular manifold method in terms of the Schwarzian derivative, an exact particular solution in the form of a kink is constructed, and restrictions on the coefficients of the equation necessary for the existence of such a solution are revealed. An asymptotic solution is obtained that shows good agreement with the numerical one. This solution can be used to verify the results in a numerical study of the FitzHugh – Rinzel model.
Keywords: FitzHugh – Rinzel model, singular manifold, asymptotic solution.
Mots-clés : neuron, exact solution
@article{ND_2019_15_1_a0,
     author = {A. I. Zemlyanukhin and A. V. Bochkarev},
     title = {Analytical {Properties} and {Solutions} of the {FitzHugh} {\textendash} {Rinzel} {Model}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_1_a0/}
}
TY  - JOUR
AU  - A. I. Zemlyanukhin
AU  - A. V. Bochkarev
TI  - Analytical Properties and Solutions of the FitzHugh – Rinzel Model
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 3
EP  - 12
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_1_a0/
LA  - en
ID  - ND_2019_15_1_a0
ER  - 
%0 Journal Article
%A A. I. Zemlyanukhin
%A A. V. Bochkarev
%T Analytical Properties and Solutions of the FitzHugh – Rinzel Model
%J Russian journal of nonlinear dynamics
%D 2019
%P 3-12
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_1_a0/
%G en
%F ND_2019_15_1_a0
A. I. Zemlyanukhin; A. V. Bochkarev. Analytical Properties and Solutions of the FitzHugh – Rinzel Model. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/ND_2019_15_1_a0/

[1] Hodgkin, A. L. and Huxley, A. F., “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”, J. Physiol., 117:4 (1952), 500–544 | DOI

[2] FitzHugh, R., “Impulses and Physiological States in Theoretical Models of Nerve Membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI

[3] Nagumo, J., Arimoto, S., and Yoshizawa, S., “An Active Pulse Transmission Line Simulating Nerve Axon”, Proc. of the IRE, 50:10 (1962), 2061–2070 | DOI

[4] FitzHugh, R., “A Kinetic Model for the Conductance Changes in Nerve Membranes”, J. Cell. Comp. Physiol., 66:suppl. 2 (1965), 111–117 | DOI

[5] Pis'ma v Zh. Èksper. Teoret. Fiz., 77:6 (2003), 319–325 (Russian) | DOI | MR

[6] Llibre, J. and Vidal, C., “Periodic Solutions of a Periodic FitzHugh – Nagumo System”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:13 (2015), 1550180, 6 pp. | DOI | MR | Zbl

[7] Tsuji, Sh., Ueta, T., Kawakami, H., and Aihara, K., “A Design Method of Bursting Using Two-Parameter Bifurcation Diagrams in FitzHugh – Nagumo Model”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:7 (2004), 2241–2252 | DOI | MR | Zbl

[8] Gelens, L., Anderson, G. A., and Ferrell, J. E., Jr., “Spatial Trigger Waves: Positive Feedback Gets You a Long Way”, Mol. Biol. Cell, 25:22 (2014), 3486–3493 | DOI

[9] Cheng, X., and Ferrell, J. E., Jr., “Apoptosis Propagates through the Cytoplasm As Trigger Waves”, Science, 361:6402 (2018), 607–612 | DOI

[10] Kudryashov, N. A., “Asymptotic and Exact Solutions of the FitzHugh – Nagumo Model”, Regul. Chaotic Dyn., 23:2 (2018), 152–160 | DOI | MR | Zbl

[11] Kudryashov, N. A., Rybka, R. B., and Sboev, A. G., “Analytical Properties of the Perturbed FitzHugh – Nagumo Model”, Appl. Math. Lett., 76 (2018), 142–147 | DOI | MR | Zbl

[12] Rinzel, J., “A Formal Classification of Bursting Mechanisms in Excitable Systems”, Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, Lecture Notes in Biomath., 71, eds. E. Teramoto, M. Yamaguti, Springer, Berlin, 1987, 267–281 | DOI | MR

[13] Izv. Vyssh. Uchebn. Zaved. Radiofizika, 49:11 (2006), 1002–1014 (Russian) | DOI

[14] Wojcik, J. and Shilnikov, A., Voltage Interval Mappings for an Elliptic Bursting Model, 2013, arXiv: 1310.5232 [nlin.CD] | MR

[15] Conte, R., “Singularities of Differential Equations and Integrability”, Introduction to Methods of Complex Analysis and Geometry for Classical Mechanics and Nonlinear Waves (Chamonix, 1993), eds. D. Benest, C. Froeschle, Frontières, Gif-sur-Yvette, 1994, 49–143 | MR | Zbl

[16] Weiss, J., Tabor, M., and Carnevale, G., “The Painlevé Property for Partial Differential Equations”, J. Math. Phys., 24:3 (1983), 522–526 | DOI | MR | Zbl

[17] Weiss, J., “The Painlevé Property for Partial Differential Equations: 2. Bäcklund Transformation, Lax Pairs, and the Schwarzian Derivative”, J. Math. Phys., 24:6 (1983), 1405–1413 | DOI | MR | Zbl

[18] Kudryashov, N. A., “From Singular Manifold Equations to Integrable Evolution Equations”, J. Phys. A, 27:7 (1994), 2457–2470 | DOI | MR | Zbl