Mots-clés : $SU_2$, antipodal points
@article{ND_2018_14_4_a9,
author = {A. V. Podobryaev},
title = {Antipodal {Points} and {Diameter} of a {Sphere}},
journal = {Russian journal of nonlinear dynamics},
pages = {579--581},
year = {2018},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2018_14_4_a9/}
}
A. V. Podobryaev. Antipodal Points and Diameter of a Sphere. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 579-581. http://geodesic.mathdoc.fr/item/ND_2018_14_4_a9/
[1] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004 | DOI | MR | Zbl
[2] Berger, M., “Les variétés riemanniannes homogènes normales simplement connexes à courbure strictement positive”, Ann. Scoula Norm. Sup. Pisa, 15:3 (1961), 179–246 | MR | Zbl
[3] Nikonorov, Yu. G., “For a Geodesic Diameter of Surfaces with Isometric Involution”, Trudy Rubtzovsk. Industrialn. Inst., 9 (2001), 62–65 (Russian) | Zbl
[4] Nikonorov, Y. G. and Nikonorova, Y. V., “The Intrinsic Diameter of the Surface of a Parallelepiped”, Discrete Comput. Geom., 40:4 (2008), 504–527 | DOI | MR | Zbl
[5] Novikov, S. P. and Taimanov, I. A., Modern Geometric Structures and Fields, Grad. Stud. Math., 71, AMS, Providence, R.I., 2006, xx+633 pp. | DOI | MR | Zbl
[6] Mat. Zametki, 103:5 (2018), 779–784 (Russian) | DOI | DOI | MR | Zbl
[7] Podobryaev, A. V. and Sachkov, Yu. L., “Cut Locus of a Left Invariant Riemannian Metric on $SO(3)$ in the Axisymmetric Case”, J. Geom. Phys., 110 (2016), 436–453 | DOI | MR | Zbl