An Extention of Herman’s Theorem for Nonlinear Circle Maps with Two Breaks
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 553-577.

Voir la notice de l'article provenant de la source Math-Net.Ru

M. Herman showed that the invariant measure $\mu_h$ of a piecewise linear (PL) circle homeomorphism $h$ with two break points and an irrational rotation number $\rho_{h}$ is absolutely continuous iff the two break points belong to the same orbit. We extend Herman's result to the class P of piecewise $ C^{2+\varepsilon} $-circle maps $f$ with an irrational rotation number $\rho_f$ and two break points $ a_{0}, c_{0}$, which do not lie on the same orbit and whose total jump ratio is $\sigma_f=1$, as follows: if $\mu_f$ denotes the invariant measure of the $P$-homeomorphism $f$, then for Lebesgue almost all values of $\mu_f([a_0, c_{0}])$ the measure $\mu_f$ is singular with respect to Lebesgue measure.
Keywords: piecewise-smooth circle homeomorphism, break point, rotation number, invariant measure.
@article{ND_2018_14_4_a8,
     author = {A. Dzhalilov and D. Mayer and S. Djalilov and A. Aliyev},
     title = {An {Extention} of {Herman{\textquoteright}s} {Theorem} for {Nonlinear} {Circle} {Maps} with {Two} {Breaks}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {553--577},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_4_a8/}
}
TY  - JOUR
AU  - A. Dzhalilov
AU  - D. Mayer
AU  - S. Djalilov
AU  - A. Aliyev
TI  - An Extention of Herman’s Theorem for Nonlinear Circle Maps with Two Breaks
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 553
EP  - 577
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_4_a8/
LA  - en
ID  - ND_2018_14_4_a8
ER  - 
%0 Journal Article
%A A. Dzhalilov
%A D. Mayer
%A S. Djalilov
%A A. Aliyev
%T An Extention of Herman’s Theorem for Nonlinear Circle Maps with Two Breaks
%J Russian journal of nonlinear dynamics
%D 2018
%P 553-577
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_4_a8/
%G en
%F ND_2018_14_4_a8
A. Dzhalilov; D. Mayer; S. Djalilov; A. Aliyev. An Extention of Herman’s Theorem for Nonlinear Circle Maps with Two Breaks. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 553-577. http://geodesic.mathdoc.fr/item/ND_2018_14_4_a8/

[1] Adouani, A. and Marzougui, H., “Singular Measures for Class $P$-Circle Homeomorphisms with Several Break Points”, Ergodic Theory Dynam. Systems, 34:2 (2014), 423–456 | DOI | MR | Zbl

[2] Arnol'd, V. I., “Small Denominators: 1. Mapping the Circle onto Itself”, Izv. Akad. Nauk SSSR. Ser. Mat., 1:1 (1961), 21–86 (Russian) | MR

[3] Coelho, Z., Lopes, A., and da Rocha, L. F., “Absolutely Continuous Invariant Measures for a Class of Affine Interval Exchange Maps”, Proc. Amer. Math. Soc., 123:11 (1995), 3533–3542 | DOI | MR | Zbl

[4] Cornfeld, I. P., Fomin, S. V., and Sinai, Ya. G., Ergodic Theory, Grundlehren Math. Wiss., 245, Springer, New York, 1982, x+486 pp. | DOI | MR | Zbl

[5] Denjoy, A., “Sur les courbes définies par les équations différentielles à la surface du tore”, J. Math. Pures Appl. (9), 11 (1932), 333–375

[6] Funktsional. Anal. i Prilozhen., 32:3 (1998), 11–21 (Russian) | DOI | DOI | MR | Zbl

[7] Teoret. Mat. Fiz., 120:2 (1999), 961–972 (Russian) | DOI | MR | Zbl

[8] Dzhalilov, A. A. and Liousse, I., “Circle Homeomorphisms with Two Break Points”, Nonlinearity, 19:8 (2006), 1951–1968 | DOI | MR | Zbl

[9] Dzhalilov, A., Liousse, I., and Mayer, D., “Singular Measures of Piecewise Smooth Circle Homeomorphisms with Two Break Points”, Discrete Contin. Dyn. Syst., 24:2 (2009), 381–403 | DOI | MR | Zbl

[10] Dzhalilov, A., Jalilov, A., and Mayer, D., “A Remark on Denjoy's Inequality for $PL$ Circle Homeomorphisms with Two Break Points”, J. Math. Anal. Appl., 458:1 (2018), 508–520 | DOI | MR | Zbl

[11] Izv. Ross. Akad. Nauk Ser. Mat., 76:1 (2012), 101–120 (Russian) | DOI | DOI | MR | Zbl

[12] Katznelson, Y. and Ornstein, D., “The Absolute Continuity of the Conjugation of Certain Diffeomorphisms of the Circle”, Ergodic Theory Dynam. Systems, 9:4 (1989), 681–690 | MR

[13] Hawkins, J. and Schmidt, K., “On $C^{2}$-Diffeomorphisms of the Circle Which Are of Type ${\rm III}_{1}$”, Invent. Math., 66:3 (1982), 511–518 | DOI | MR | Zbl

[14] Herman, M., “Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations”, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5–233 | DOI | MR | Zbl

[15] Khanin, K. M. and Kocić, S., “Hausdorff Dimension of Invariant Measure of Circle Diffeomorphisms with Breaks”, Ergod. Theory Dyn. Syst., 63 (2017), 1–9 | DOI

[16] Uspekhi Mat. Nauk, 44:1(265) (1989), 57–82, 247 | DOI | MR

[17] Kuipers, L. and Niederreiter, H., Uniform Distribution of Sequences, Pure Appl. Math., Wiley, New York, 1974, xiv+390 pp. | MR | Zbl

[18] Larcher, G., “A Convergence Problem Connected with Continued Fractions”, Proc. Amer. Math. Soc., 103:3 (1988), 718–722 | DOI | MR | Zbl

[19] Liousse, I., “$PL$ Homeomorphisms of the Circle Which Are Piecewise $C^1$ conjugate to Irrational Rotations”, Bull. Braz. Math. Soc. (N. S.), 35:2 (2004), 269–280 | DOI | MR | Zbl

[20] Liousse, I., “Nombre de rotation, mesures invariantes et ratio set des homéomorphismes affines par morceaux du cercle”, Ann. Inst. Fourier (Grenoble), 55:2 (2005), 431–482 | DOI | MR | Zbl

[21] Nakada, H., “Piecewise Linear Homeomorphisms of Type ${\rm III}$ and the Ergodicity of Cylinder Flows”, Keio Math. Sem. Rep., 1982, no. 7, 29–40 | MR | Zbl

[22] Teplinsky, A., “A Circle Diffeomorphism with Breaks That Is Smoothly Linearizable”, Ergod. Theory Dyn. Syst., 38:1 (2018), 371–383 | DOI | MR | Zbl

[23] Yoccoz, J.-Ch., “Il n'y a pas de contre-exemple de Denjoy analytique”, C. R. Acad. Sci. Paris Sér. 1 Math., 298:7 (1984), 141–144 | MR | Zbl