Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_4_a8, author = {A. Dzhalilov and D. Mayer and S. Djalilov and A. Aliyev}, title = {An {Extention} of {Herman{\textquoteright}s} {Theorem} for {Nonlinear} {Circle} {Maps} with {Two} {Breaks}}, journal = {Russian journal of nonlinear dynamics}, pages = {553--577}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_4_a8/} }
TY - JOUR AU - A. Dzhalilov AU - D. Mayer AU - S. Djalilov AU - A. Aliyev TI - An Extention of Herman’s Theorem for Nonlinear Circle Maps with Two Breaks JO - Russian journal of nonlinear dynamics PY - 2018 SP - 553 EP - 577 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_4_a8/ LA - en ID - ND_2018_14_4_a8 ER -
%0 Journal Article %A A. Dzhalilov %A D. Mayer %A S. Djalilov %A A. Aliyev %T An Extention of Herman’s Theorem for Nonlinear Circle Maps with Two Breaks %J Russian journal of nonlinear dynamics %D 2018 %P 553-577 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2018_14_4_a8/ %G en %F ND_2018_14_4_a8
A. Dzhalilov; D. Mayer; S. Djalilov; A. Aliyev. An Extention of Herman’s Theorem for Nonlinear Circle Maps with Two Breaks. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 553-577. http://geodesic.mathdoc.fr/item/ND_2018_14_4_a8/
[1] Adouani, A. and Marzougui, H., “Singular Measures for Class $P$-Circle Homeomorphisms with Several Break Points”, Ergodic Theory Dynam. Systems, 34:2 (2014), 423–456 | DOI | MR | Zbl
[2] Arnol'd, V. I., “Small Denominators: 1. Mapping the Circle onto Itself”, Izv. Akad. Nauk SSSR. Ser. Mat., 1:1 (1961), 21–86 (Russian) | MR
[3] Coelho, Z., Lopes, A., and da Rocha, L. F., “Absolutely Continuous Invariant Measures for a Class of Affine Interval Exchange Maps”, Proc. Amer. Math. Soc., 123:11 (1995), 3533–3542 | DOI | MR | Zbl
[4] Cornfeld, I. P., Fomin, S. V., and Sinai, Ya. G., Ergodic Theory, Grundlehren Math. Wiss., 245, Springer, New York, 1982, x+486 pp. | DOI | MR | Zbl
[5] Denjoy, A., “Sur les courbes définies par les équations différentielles à la surface du tore”, J. Math. Pures Appl. (9), 11 (1932), 333–375
[6] Funktsional. Anal. i Prilozhen., 32:3 (1998), 11–21 (Russian) | DOI | DOI | MR | Zbl
[7] Teoret. Mat. Fiz., 120:2 (1999), 961–972 (Russian) | DOI | MR | Zbl
[8] Dzhalilov, A. A. and Liousse, I., “Circle Homeomorphisms with Two Break Points”, Nonlinearity, 19:8 (2006), 1951–1968 | DOI | MR | Zbl
[9] Dzhalilov, A., Liousse, I., and Mayer, D., “Singular Measures of Piecewise Smooth Circle Homeomorphisms with Two Break Points”, Discrete Contin. Dyn. Syst., 24:2 (2009), 381–403 | DOI | MR | Zbl
[10] Dzhalilov, A., Jalilov, A., and Mayer, D., “A Remark on Denjoy's Inequality for $PL$ Circle Homeomorphisms with Two Break Points”, J. Math. Anal. Appl., 458:1 (2018), 508–520 | DOI | MR | Zbl
[11] Izv. Ross. Akad. Nauk Ser. Mat., 76:1 (2012), 101–120 (Russian) | DOI | DOI | MR | Zbl
[12] Katznelson, Y. and Ornstein, D., “The Absolute Continuity of the Conjugation of Certain Diffeomorphisms of the Circle”, Ergodic Theory Dynam. Systems, 9:4 (1989), 681–690 | MR
[13] Hawkins, J. and Schmidt, K., “On $C^{2}$-Diffeomorphisms of the Circle Which Are of Type ${\rm III}_{1}$”, Invent. Math., 66:3 (1982), 511–518 | DOI | MR | Zbl
[14] Herman, M., “Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations”, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5–233 | DOI | MR | Zbl
[15] Khanin, K. M. and Kocić, S., “Hausdorff Dimension of Invariant Measure of Circle Diffeomorphisms with Breaks”, Ergod. Theory Dyn. Syst., 63 (2017), 1–9 | DOI
[16] Uspekhi Mat. Nauk, 44:1(265) (1989), 57–82, 247 | DOI | MR
[17] Kuipers, L. and Niederreiter, H., Uniform Distribution of Sequences, Pure Appl. Math., Wiley, New York, 1974, xiv+390 pp. | MR | Zbl
[18] Larcher, G., “A Convergence Problem Connected with Continued Fractions”, Proc. Amer. Math. Soc., 103:3 (1988), 718–722 | DOI | MR | Zbl
[19] Liousse, I., “$PL$ Homeomorphisms of the Circle Which Are Piecewise $C^1$ conjugate to Irrational Rotations”, Bull. Braz. Math. Soc. (N. S.), 35:2 (2004), 269–280 | DOI | MR | Zbl
[20] Liousse, I., “Nombre de rotation, mesures invariantes et ratio set des homéomorphismes affines par morceaux du cercle”, Ann. Inst. Fourier (Grenoble), 55:2 (2005), 431–482 | DOI | MR | Zbl
[21] Nakada, H., “Piecewise Linear Homeomorphisms of Type ${\rm III}$ and the Ergodicity of Cylinder Flows”, Keio Math. Sem. Rep., 1982, no. 7, 29–40 | MR | Zbl
[22] Teplinsky, A., “A Circle Diffeomorphism with Breaks That Is Smoothly Linearizable”, Ergod. Theory Dyn. Syst., 38:1 (2018), 371–383 | DOI | MR | Zbl
[23] Yoccoz, J.-Ch., “Il n'y a pas de contre-exemple de Denjoy analytique”, C. R. Acad. Sci. Paris Sér. 1 Math., 298:7 (1984), 141–144 | MR | Zbl