Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_4_a7, author = {Nozdrinova E. V.}, title = {Rotation {Number} as a {Complete} {Topological} {Invariant} of a {Simple} {Isotopic} {Class} of {Rough} {Transformations} of a {Circle}}, journal = {Russian journal of nonlinear dynamics}, pages = {543--551}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_4_a7/} }
TY - JOUR AU - Nozdrinova E. V. TI - Rotation Number as a Complete Topological Invariant of a Simple Isotopic Class of Rough Transformations of a Circle JO - Russian journal of nonlinear dynamics PY - 2018 SP - 543 EP - 551 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_4_a7/ LA - en ID - ND_2018_14_4_a7 ER -
%0 Journal Article %A Nozdrinova E. V. %T Rotation Number as a Complete Topological Invariant of a Simple Isotopic Class of Rough Transformations of a Circle %J Russian journal of nonlinear dynamics %D 2018 %P 543-551 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2018_14_4_a7/ %G en %F ND_2018_14_4_a7
Nozdrinova E. V. Rotation Number as a Complete Topological Invariant of a Simple Isotopic Class of Rough Transformations of a Circle. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 543-551. http://geodesic.mathdoc.fr/item/ND_2018_14_4_a7/
[1] Andronov, A. A. and Pontryagin, L. S., “Rough Systems”, Dokl. Akad. Nauk SSSR, 14:5 (1937), 247–250 (Russian)
[2] Blanchard, P. R., “Invariants of the NPT Isotopy Classes of Morse – Smale Diffeomorphisms of Surfaces”, Duke Math. J., 47:1 (1980), 33–46 | DOI | MR | Zbl
[3] Mat. Zametki, 94:6 (2013), 828–845 (Russian) | DOI | DOI | MR | Zbl
[4] Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on $2$- and $3$-Manifolds, Dev. Math., 46, Springer, New York, 2016, xxvi, 295 pp. | MR | Zbl
[5] Maier, A. G., “Rough Transform Circle into a Circle”, Uchen. Zap. Gorkov. Gos. Univ., 1939, no. 12, 215–229 (Russian)
[6] Matsumoto, Sh., “There Are Two Isotopic Morse – Smale Diffeomorphisms Which Cannot Be Joined by Simple Arcs”, Invent. Math., 51:1 (1979), 1–7 | DOI | MR | Zbl
[7] Newhouse, S., Palis, J., and Takens, F., “Bifurcations and Stability of Families of Diffeomorphisms”, Inst. Hautes Études Sci. Publ. Math., 1983, no. 57, 5–71 | DOI | MR | Zbl
[8] Newhouse, S. and Peixoto, M. M., “There Is a Simple Arc Joining Any Two Morse – Smale Flows”, Trois études en dynamique qualitative, Astérisque, 31, Soc. Math. France, Paris, 1976, 15–41 | MR
[9] Pochinka, O. V., Nozdrinova, E. V., and Kolobianina, A. E., “Classification of Rough Transformations of a Circle from a Modern Point of View”, Zh. Srednevolzhsk. Mat. Obshch., 19:1 (2017), 1–10 (Russian)
[10] Pochinka, O., Nozdrinova, E., and Dolgonosova, A., “On the Obstructions to the Existence of a Simple Arc Joining the Multidimensional Morse – Smale Diffeomorphisms”, Dinam. Sist., 7(35):2 (2017), 103–111 | MR
[11] Palis, J. and Pugh, C. C., “Fifty Problems in Dynamical Systems”, Dynamical Systems: Proc. Sympos. Appl. Topology and Dynamical Systems:Presented to E. C. Zeeman on His Fiftieth Birthday (Univ. Warwick, Coventry, 1973/1974), Lecture Notes in Math., 468, ed. A. Manning, Springer, Berlin, 1975, 345–353 | DOI | MR