Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_4_a5, author = {A. P. Markeev}, title = {On {Nonlinear} {Resonant} {Oscillations} of a {Rigid} {Body} {Generated} by {Its} {Conical} {Precession}}, journal = {Russian journal of nonlinear dynamics}, pages = {503--518}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_4_a5/} }
TY - JOUR AU - A. P. Markeev TI - On Nonlinear Resonant Oscillations of a Rigid Body Generated by Its Conical Precession JO - Russian journal of nonlinear dynamics PY - 2018 SP - 503 EP - 518 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_4_a5/ LA - en ID - ND_2018_14_4_a5 ER -
A. P. Markeev. On Nonlinear Resonant Oscillations of a Rigid Body Generated by Its Conical Precession. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 503-518. http://geodesic.mathdoc.fr/item/ND_2018_14_4_a5/
[1] Beletskii, V. V., Motion of an Artificial Satellite about Its Center of Mass, Jerusalem, 1966, x, 261 pp.
[2] Beletskii, V. V., Satellite's Motion about Center of Mass in a Gravitational Field, MGU, Moscow, 1975 (Russian)
[3] Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009, 396 pp. (Russian)
[4] Korteweg, D. J., “Sur certaines vibrations d'ordre supérieur et d'intensité anormale — vibrations de relations, — dans les mécanismes à plusieurs degrés de liberté”, Arch. Néerl. sci. exactes et natur. Sér. 2, 1 (1898), 229–260 | Zbl
[5] Beth, H. I. E., “Les oscillations autour d'une position dans le cas d'existence d'une relation linéaire simple entre les nombres vibratoires”, Arch. Néerl. sci. exactes et natur. Sér. 2, 15 (1910), 246–283 | Zbl
[6] Beth, H. I. E., “Les oscillations autour d'une position dans le cas d'existence d'une relation linéaire simple entre les nombres vibratoires (suite)”, Arch. Néerl. sci. exactes et natur. Sér. 3A, 1 (1912), 185–213
[7] Prikl. Mat. Mekh., 75:6 (2011), 901–922 (Russian) | DOI | MR
[8] Hénon, M. and Heiles, C., “The Applicability of the Third Integral of Motion: Some Numerical Experiments”, Astronom. J., 69:1 (1964), 73–79 | MR
[9] Roels, J., “An Extension to Resonant Cases of Liapunov's Theorem Concerning the Periodic Solutions near a Hamiltonian Equilibrium”, J. Differential Equations, 9:2 (1971), 300–324 | DOI | MR | Zbl
[10] Braun, M., “On the Applicability of the Third Integral of Motion”, J. Differential Equations, 13:2 (1973), 300–318 | DOI | MR | Zbl
[11] Breiter, S. and Elipe, A., “Pseudo-Oscillator with a Quartic Perturbation”, Mech. Res. Comm., 28:2 (2001), 119–126 | DOI | MR | Zbl
[12] Kholostova, O. V. and Safonov, A. I., “Investigation of the Motions of an Autonomous Hamiltonian System at a $1:1$ Resonance”, Regul. Chaotic Dyn., 22:7 (2017), 792–807 | DOI | MR | Zbl
[13] Birkhoff, G. D., Dynamical Systems, AMS, Providence, R.I., 1966, 305 pp. | MR | Zbl
[14] Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, viii+369 pp. | DOI | MR | Zbl
[15] Prikl. Mat. Mekh., 62:3 (1998), 372–382 (Russian) | DOI | MR
[16] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1998, no. 4, 38–49 (Russian)
[17] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp. | MR | Zbl
[18] Markeev, A. P., “Nonlinear Oscillations of Sympathetic Pendulums”, Nelin. Dinam., 6:3 (2010), 605–621 (Russian) | DOI
[19] Prikl. Mat. Mekh., 66:6 (2002), 929–938 (Russian) | DOI | MR
[20] Prikl. Mat. Mekh., 45:6 (1981), 1016–1025 (Russian) | DOI | MR