Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_4_a1, author = {V. M. Doroshenko and V. P. Kruglov and S. P. Kuznetsov}, title = {Smale {\textendash} {Williams} {Solenoids} in a {System} of {Coupled} {Bonhoeffer} {\textendash} van der {Pol} {Oscillators}}, journal = {Russian journal of nonlinear dynamics}, pages = {435--451}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_4_a1/} }
TY - JOUR AU - V. M. Doroshenko AU - V. P. Kruglov AU - S. P. Kuznetsov TI - Smale – Williams Solenoids in a System of Coupled Bonhoeffer – van der Pol Oscillators JO - Russian journal of nonlinear dynamics PY - 2018 SP - 435 EP - 451 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_4_a1/ LA - en ID - ND_2018_14_4_a1 ER -
%0 Journal Article %A V. M. Doroshenko %A V. P. Kruglov %A S. P. Kuznetsov %T Smale – Williams Solenoids in a System of Coupled Bonhoeffer – van der Pol Oscillators %J Russian journal of nonlinear dynamics %D 2018 %P 435-451 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2018_14_4_a1/ %G en %F ND_2018_14_4_a1
V. M. Doroshenko; V. P. Kruglov; S. P. Kuznetsov. Smale – Williams Solenoids in a System of Coupled Bonhoeffer – van der Pol Oscillators. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 435-451. http://geodesic.mathdoc.fr/item/ND_2018_14_4_a1/
[1] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[2] Williams, R., “Expanding Attractors”, Inst. Hautes Études Sci. Publ. Math., 1974, no. 43, 169–203 | DOI | MR
[3] Shilnikov, L., “Mathematical Problems of Nonlinear Dynamics: A Tutorial”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7:9 (1997), 1953–2001 | DOI | MR | Zbl
[4] Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp. | MR | Zbl
[5] Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, Encyclopaedia Math. Sci., 66, ed. D. V. Anosov, Springer, Berlin, 1995, VIII+236 pp.
[6] Afraimovich, V. S. and Hsu, S.-B., Lectures on Chaotic Dynamical Systems, AMS/IP Stud. Adv. Math., 28, AMS, Providence, R.I., 2003, 353 pp. | DOI | MR | Zbl
[7] Kuznetsov, S. P., Hyperbolic Chaos: A Physicist's View, Springer, Berlin, 2012, 336 pp. | Zbl
[8] Kuznetsov, S. P., “Example of a Physical System with a Hyperbolic Attractor of the Smale – Williams Type”, Phys. Rev. Lett., 95:14 (2005), 144101, 4 pp. | DOI
[9] Zh. Èksper. Teoret. Fiz., 129:2 (2006), 400–412 (Russian) | DOI | MR
[10] Kuznetsov, S. P. and Sataev, I. R., “Hyperbolic Attractor in a System of Coupled Non-Autonomous van der Pol Oscillators: Numerical Test for Expanding and Contracting Cones”, Phys. Lett. A, 365:1–2 (2007), 97–104 | DOI | Zbl
[11] Kuznetsov, S. P. and Kruglov, V. P., “Hyperbolic Chaos in a System of Two Froude Pendulums with Alternating Periodic Braking”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 152–161 | DOI | MR
[12] Isaeva, O. B., Jalnine, A. Yu., and Kuznetsov, S. P., “Arnold's Cat Map Dynamics in a System of Coupled Nonautonomous van der Pol Oscillators”, Phys. Rev. E, 74:4 (2006), 046207, 5 pp. | DOI
[13] Kuznetsov, S. P. and Pikovsky, A., “Autonomous Coupled Oscillators with Hyperbolic Strange Attractors”, Phys. D, 232:2 (2007), 87–102 | DOI | MR | Zbl
[14] Kuznetsov, S. P., “Example of Blue Sky Catastrophe Accompanied by a Birth of Smale – Williams Attractor”, Regul. Chaotic Dyn., 15:2–3 (2010), 348–353 | DOI | MR | Zbl
[15] FitzHugh, R., “Impulses and Physiological States in Theoretical Models of Nerve Membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI
[16] Nagumo, J., Arimoto, S., and Yoshizawa, S., “An Active Pulse Transmission Line Simulating Nerve Axon”, Proc. of the IRE, 50:10 (1962), 2061–2070 | DOI
[17] Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory”, Meccanica, 15 (1980), 9–20 | DOI | Zbl
[18] Shimada, I. and Nagashima, T., “A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems”, Progr. Theoret. Phys., 61:6 (1979), 1605–1616 | DOI | MR | Zbl
[19] Lai, Y.-Ch., Grebogi, C., Yorke, J. A., and Kan, I., “How Often Are Chaotic Saddles Nonhyperbolic?”, Nonlinearity, 6:5 (1993), 779–797 | DOI | MR | Zbl
[20] Anishchenko, V. S., Kopeikin, A. S., Kurths, J., Vadivasova, T. E., and Strelkova, G. I., “Studying Hyperbolicity in Chaotic Systems”, Phys. Lett. A, 270:6 (2000), 301–307 | DOI | MR | Zbl
[21] Kuptsov, P. V., “Fast Numerical Test of Hyperbolic Chaos”, Phys. Rev. E, 85:1 (2012), 015203(R), 4 pp. | DOI
[22] Kuznetsov, S. P. and Kruglov, V. P., “Verification of Hyperbolicity for Attractors of Some Mechanical Systems with Chaotic Dynamics”, Regul. Chaotic Dyn., 21:2 (2016), 160–174 | DOI | MR | Zbl