Analysis of a Mathematical Model for Nuclear Spins in an Antiferromagnet
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 217-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with a system of three nonlinear differential equations, which is a mathematical model for a system of nuclear spins in an antiferromagnet. The model has arisen in recent physical studies and differs from the well-known and well-understood Landau–Lifshitz and Bloch models in the manner of incorporating dissipation effects. It is established that the system under consideration is related to the Landau–Lifshitz system by the passage to the limit only on one invariant sphere. The initial equations contain three dimensionless parameters. Equilibrium points and their stability are examined depending on these parameters. The position of the bifurcation surface is found in the parameter space. It is proved that the corresponding equilibrium is of saddle-node type. Exact statements are illustrated by results of numerical experiments.
Keywords: nonlinear equations, equilibrium, stability
Mots-clés : bifurcation.
@article{ND_2018_14_2_a5,
     author = {L. A. Kalyakin},
     title = {Analysis of a {Mathematical} {Model} for {Nuclear} {Spins} in an {Antiferromagnet}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {217--234},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_2_a5/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Analysis of a Mathematical Model for Nuclear Spins in an Antiferromagnet
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 217
EP  - 234
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_2_a5/
LA  - en
ID  - ND_2018_14_2_a5
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Analysis of a Mathematical Model for Nuclear Spins in an Antiferromagnet
%J Russian journal of nonlinear dynamics
%D 2018
%P 217-234
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_2_a5/
%G en
%F ND_2018_14_2_a5
L. A. Kalyakin. Analysis of a Mathematical Model for Nuclear Spins in an Antiferromagnet. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 217-234. http://geodesic.mathdoc.fr/item/ND_2018_14_2_a5/

[1] Haberman, R. and Ho, E. K., “Boundary of the Basin of Attraction for Weakly Damped Primary Resonance”, Trans. ASME J. Appl. Mech., 62:4 (1995), 941–946 | DOI | MR | Zbl

[2] Itin, A. P., Neishtadt, A. I., and Vasiliev, A. A., “Capture into Resonance in Dynamics of a Charged Partice in Magnetic Field and Electrostatic Wave”, Phys. D, 141:3–4 (2000), 281–296 | DOI | MR | Zbl

[3] Kiselev, O. M. and Glebov, S. G., “An Asymptotic Solution Slowly Crossing the Separatrix near a Saddle-Centre Bifurcation Point”, Nonlinearity, 16:1 (2003), 327–362 | DOI | MR | Zbl

[4] Bautin, N. N. and Leontovich, E. A., Methods and Ways of the Qualitative Analysis of Dynamical Systems in a Plane, 2nd ed., Nauka, Moscow, 1990, 496 pp. (Russian) | MR

[5] Pis'ma v Zh. Èksper. Teoret. Fiz., 105:1 (2017), 23–27 (Russian) | DOI

[6] Gurevich, A. G. and Melkov, G. A., Magnetization Oscillations and Waves, CRC, New York, 1996, 464 pp.

[7] Kalyakin, L. A., “Analysis of the Bloch Equations for the Nuclear Magnetization Model”, Proc. Steklov Inst. Math., 281:1 (2013), S64–S81 | MR | Zbl

[8] Teoret. Mat. Fiz., 167:3 (2011), 420–431 (Russian) | DOI | DOI | MR

[9] Kalyakin, L. A. and Shamsutdinov, M. A., “Adiabatic Approximations for Landau – Lifshitz Equations”, Proc. Steklov Inst. Math., 259:2 (2007), S124–S140 | DOI | Zbl

[10] Monosov, Ya. A., Nonlinear Ferromagnetic Resonance, Nauka, Moscow, 1971, 376 pp. (Russian)

[11] Nemytskii, V. V. and Stepanov, V. V., Qualitative Theory of Differential Equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, N.J., 1960, viii+523 pp. | MR