Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_2_a3, author = {K. S. Sergeev and S. V. Dmitriev and E. A. Korznikova and A. P. Chetverikov}, title = {Stationary {Modes} and {Localized} {Metastable} {States} in a {Triangular} {Lattice} of {Active} {Particles}}, journal = {Russian journal of nonlinear dynamics}, pages = {195--207}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_2_a3/} }
TY - JOUR AU - K. S. Sergeev AU - S. V. Dmitriev AU - E. A. Korznikova AU - A. P. Chetverikov TI - Stationary Modes and Localized Metastable States in a Triangular Lattice of Active Particles JO - Russian journal of nonlinear dynamics PY - 2018 SP - 195 EP - 207 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_2_a3/ LA - en ID - ND_2018_14_2_a3 ER -
%0 Journal Article %A K. S. Sergeev %A S. V. Dmitriev %A E. A. Korznikova %A A. P. Chetverikov %T Stationary Modes and Localized Metastable States in a Triangular Lattice of Active Particles %J Russian journal of nonlinear dynamics %D 2018 %P 195-207 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2018_14_2_a3/ %G en %F ND_2018_14_2_a3
K. S. Sergeev; S. V. Dmitriev; E. A. Korznikova; A. P. Chetverikov. Stationary Modes and Localized Metastable States in a Triangular Lattice of Active Particles. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 195-207. http://geodesic.mathdoc.fr/item/ND_2018_14_2_a3/
[1] Romanczuk, P., Bar, M., Ebeling, W., Lindner, B., and Schimansky-Geier, L., “Active Brownian Particles: From Individual to Collective Stochastic Dynamics”, Eur. Phys. J. Special Topics, 202:1 (2012), 1–162 | DOI
[2] Saintillan, D. and Shelley, M. J., “Instabilities and Pattern Formation in Active Particle Suspensions: Kinetic Theory and Continuum Simulations”, Phys. Rev. Lett., 100:17 (2008), 178103, 4 pp. | DOI
[3] Farrell, F. D. C., Marchetti, M. C., Marenduzzo, D., and Tailleur, J., “Pattern Formation in Self-Propelled Particles with Density-Dependent Motility”, Phys. Rev. Lett., 108:24 (2012), 248101, 5 pp. | DOI
[4] Schweitzer, F., Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences, Springer, Berlin, 2003, XVI, 421 pp. | MR | Zbl
[5] Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, Ch., Volpe, Giorgio, and Volpe, Giovanni, “Active Particles in Complex and Crowded Environments”, Rev. Modern Phys., 88:4 (2016), 045006, 50 pp. | DOI | MR
[6] Marchetti, M., Fily, Ya., Henkes, S., Patch, A., and Yllanes, D., “Minimal Model of Active Colloids Highlights the Role of Mechanical Interactions in Controlling the Emergent Behavior of Active Matter”, Curr. Opin. Colloid Interface Sci., 21 (2016), 34–43 | DOI
[7] Balboa Usabiaga, F., Kallemov, B., Delmotte, B., Bhalla, A. P. S., Griffith, B. E., and Donev, A., “Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach”, Commun. Appl. Math. Comput. Sci., 11:2 (2016), 217–296 | DOI | MR
[8] Alarcón, F. and Pagonabarraga, I., “Spontaneous Aggregation and Global Polar Ordering in Squirmer Suspensions”, J. Mol. Liq., 185 (2013), 56–61 | DOI
[9] Romensky, M., Scholz, D., and Lobaskin, V., “Hysteretic Dynamics of Active Particles in a Periodic Orienting Field”, J. R. Soc. Interface, 12:108 (2015), 20150015 | DOI
[10] Wensink, H. H., Kantsler, V., Goldstein, R. E., and Dunkel, J., “Controlling Active Self-Assembly through Broken Particle-Shape Symmetry”, Phys. Rev. E, 89:1 (2014), 010302(R), 5 pp. | DOI
[11] Pis'ma Zh. Tekh. Fiz., 40:21 (2014), 88–96 | DOI
[12] Suchkov, S. V., Sukhorukov, A. A., Huang, J., Dmitriev, S. V., Lee, C., and Kivshar, Yu. S., “Nonlinear Switching and Solitons in PT-Symmetric Photonic Systems”, Laser Photonics Rev., 10:2 (2016), 177–213 | DOI
[13] Barashenkov, I. V., Suchkov, S. V., Sukhorukov, A. A., Dmitriev, S. V., and Kivshar, Yu. S., “Breathers in PT-Symmetric Optical Couplers”, Phys. Rev. A, 86:5 (2012), 053809, 12 pp. | DOI | MR
[14] Saadatmand, D., Borisov, D. I., Kevrekidis, P. G., Zhou, K., and Dmitriev, S. V., “Resonant Interaction of $\phi^4$ Kink with PT-Symmetric Perturbation with Spatially Periodic Gain/Loss Coefficient”, Commun. Nonlinear Sci. Numer. Simul., 56 (2018), 62–76 | DOI | MR
[15] Borisov, D. I. and Dmitriev, S. V., “On the Spectral Stability of Kinks in 2D Klein – Gordon Model with Parity-Time-Symmetric Perturbation”, Stud. Appl. Math., 138:3 (2017), 317–342 | DOI | MR | Zbl
[16] Pis'ma v Zh. Èksper. Teoret. Fiz., 101:7 (2015), 550–555 | DOI | MR
[17] Saadatmand, D., Dmitriev, S. V., Borisov, D. I., Kevrekidis, P. G., Fatykhov, M. A., and Javidan K., “Kink Scattering from a Parity-Time-Symmetric Defect in the $\phi^4$ Model”, Commun. Nonlinear Sci. Numer. Simul., 29:1–3 (2015), 267–282 | DOI | MR
[18] Saadatmand, D., Dmitriev, S. V., Borisov, D. I., and Kevrekidis, P. G., “Interaction of sine-Gordon Kinks and Breathers with a Parity-Time-Symmetric Defect”, Phys. Rev. E, 90:5 (2014), 052902, 10 pp. | DOI
[19] Takatori, S. C. and Brady, J. F., “A Theory for the Phase Behavior of Mixtures of Active Particles”, Soft Matter, 11:40 (2015), 7920–7931 | DOI
[20] Mallory, S. A., Valeriani, C., and Cacciuto, A., “Anomalous Dynamics of an Elastic Membrane in an Active Fluid”, Phys. Rev. E, 92:1 (2015), 012314, 6 pp. | DOI | MR
[21] Huepe, C., Ferrante, E., Wenseleers, T., and Turgut, A. E., “Scale-Free Correlations in Flocking Systems with Position-Based Interactions”, J. Stat. Phys., 158:3 (2015), 549–562 | DOI | MR | Zbl
[22] Ferrante, E., Turgut, A. E., Dorigo, M., and Huepe, C., “Collective Motion Dynamics of Active Solids and Active Crystals”, New J. Phys., 15 (2013), 095011, 20 pp. | DOI
[23] Jones, J. E., “On the Determination of Molecular Fields: 2. From the Equation of State of a Gas”, Proc. Roy. Soc. London Ser. A, 106:738 (1924), 463–477 | DOI
[24] Morse, Ph. M., “Diatomic Molecules According to the Wave Mechanics: 2. Vibrational Levels”, Phys. Rev., 34:1 (1929), 57–64 | DOI | Zbl
[25] Chetverikov, A. P., Ebeling, W., and Velarde, M. G., “Localized Nonlinear, Soliton-Like Waves in Two-Dimensional Anharmonic Lattices”, Wave Motion, 48:8 (2011), 753–760 | DOI | MR | Zbl
[26] Ikeda, K., Doi, Y., Feng, B.-F., and Kawahara, T., “Chaotic Breathers of Two Types in a Two-Dimensional Morse Lattice with an On-Site Harmonic Potential”, Phys. D, 225:2 (2007), 184–196 | DOI | MR | Zbl
[27] Chetverikov, A. P., Ebeling, W., and Velarde, M. G., “Soliton-Like Excitations and Solectrons in Two-Dimensional Nonlinear Lattices”, Eur. Phys. J. B, 80:2 (2011), 137–145 | DOI
[28] Chetverikov, A. P., Ebeling, W., and Velarde, M. G., “Properties of Nano-Scale Soliton-Like Excitations in Two-Dimensional Lattice Layers”, Phys. D, 240:24 (2011), 1954–1959 | DOI
[29] Pis'ma v Zh. Èksper. Teoret. Fiz., 103:4 (2016), 303–308 | DOI
[30] Chetverikov, A. P., Shepelev, I. A., Korznikova, E. A., Kistanov, A. A., Dmitriev, S. V., and Velarde, M. G., “Breathing Subsonic Crowdion in Morse Lattices”, Comput. Condens. Matter, 13 (2017), 59–64 | DOI
[31] Dmitriev, S. V., Medvedev, N. N., Chetverikov, A. P., Zhou, K., and Velarde, M. G., “Highly Enhanced Transport by Supersonic $N$-Crowdions”, Phys. Status Solidi RRL, 11:12 (2017), 1700298, 5 pp. | DOI
[32] Zh. Èksper. Teoret. Fiz., 153:3 (2018), 417–423 (Russian) | DOI
[33] Korznikova, E. A., Bachurin, D. V., Fomin, S. Yu., Chetverikov, A. P., and Dmitriev, S. V., “Instability of Vibrational Modes in Hexagonal Lattice”, Eur. Phys. J. B, 90:2 (2017), 23, 8 pp. | DOI
[34] Korznikova, E. A., Kistanov, A. A., Sergeev, K. S., Shepelev, D. A., Davletshin, A. R., Bokii, D. I., and Dmitriev, S. V., “The Reason for Existence of Discrete Breathers in 2D and 3D Morse Crystals”, Letters on Materials, 6:3 (2016), 221–226 (Russian) | DOI
[35] Uspekhi Fiz. Nauk, 186:5 (2016), 471–488 (Russian) | DOI | DOI
[36] Makarov, V. A., del Rio, E., Ebeling, W., Velarde, M. G., “Dissipative Toda – Rayleigh Lattice and Its Oscillatory Modes”, Phys. Rev. E, 64:3 (2001), 036601, 14 pp. | DOI
[37] Ebeling, W., Landa, P. S., and Ushakov, V. G., “Self-Oscillations in Ring Toda Chains with Negative Friction”, Phys. Rev. E, 63:4 (2001), 046601, 8 pp. | DOI
[38] del Rio, E., Makarov, V. A., Velarde, M. G., and Ebeling, W., “Mode Transitions and Wave Propagation in a Driven-Dissipative Toda – Rayleigh Ring”, Phys. Rev. E, 67:5 (2003), 056208, 9 pp. | DOI
[39] Sergeev, K. S. and Chetverikov, A. P., “Metastable States in the Morse – Rayleigh Chain”, Nelin. Dinam., 12:3 (2016), 341–353 (Russian) | DOI | MR
[40] Velarde, M. G., “Solitons as Dissipative Structures”, Int. J. Quant. Chem., 98:2 (2004), 272–280 | DOI
[41] Chetverikov, A. P., Ebeling, W., Velarde, M. G., “Solitons and Clusters in One-Dimensional Ensembles of Interacting Brownian Particles”, Izv. SGU. Novaya Seriya. Fizika, 6:1–2 (2006), 28–41 (Russian)