Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_2_a1, author = {K. E. Morozov}, title = {Transitory {Shift} in the {FitzHugh{\textendash}Nagumo} {Model}}, journal = {Russian journal of nonlinear dynamics}, pages = {169--177}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_2_a1/} }
K. E. Morozov. Transitory Shift in the FitzHugh–Nagumo Model. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 169-177. http://geodesic.mathdoc.fr/item/ND_2018_14_2_a1/
[1] Hodgkin, A. L. and Huxley, A. F., “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”, J. Physiol., 117:4 (1952), 500–544 | DOI
[2] FitzHugh, R., “Impulses and Physiological States in Theoretical Models of Nerve Membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI
[3] Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, Mass., 2007, 521 pp. | MR
[4] Mosovsky, B. A. and Meiss, J. D., “Transport in Transitory Dynamical Systems”, SIAM J. Appl. Dyn. Syst., 10:1 (2011), 35–65 | DOI | MR | Zbl
[5] Morozov, A. D. and Morozov, K. E., “Transitory Shift in the Flutter Problem”, Nelin. Dinam., 11:3 (2015), 447–457 (Russian) | DOI | MR | Zbl
[6] Morozov, A. D., Morozov, K. E., “Transitory Shift in the Pendular Type Equations”, Nelin. Dinam., 12:4 (2016), 577–589 | DOI | MR
[7] Rocsoreanu, C., Georgescu, A., and Giurgiteanu, N., The FitzHugh – Nagumo Model: Bifurcation and Dynamics, Springer, Dordrecht, 2000, xii, 238 pp. | MR
[8] Ringkvist, M. and Zhou, Y., “On the Dynamical Behaviour of FitzHugh – Nagumo Systems: Revisited”, Nonlinear Anal., 71:7–8 (2009), 2667–2687 | DOI | MR | Zbl
[9] Prokin, I. S., Simonov, A. U., and Kazancev, V. B., Mathematical Modelling of Neurodynamical Systems, Nighegorodsk. Univ., Nighny Novgorod, 2012, 41 pp. (Russian)
[10] Bautin, N. N., Behavior of Dynamical Systems near to the Boundaries of Stability, Nauka, Moscow, 1984, 176 pp. (Russian) | MR
[11] Andronov, A. A., Leontovich, E. A., Gordon, I. I., and Maier, A. G., Theory of Bifurcations of Dynamic Systems on a Plane, Wiley, New York, 1973, xiv+482 pp. | MR
[12] Mishenko, E. F. and Rozov, N. Kh., Differential Equations with Small Parameters and Relaxation Ocsillations, Plenum, New York, 1980, 228 pp. | MR