Transitory Shift in the FitzHugh–Nagumo Model
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 169-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonautonomous analogue of the FitzHugh–Nagumo model is considered. It is supposed that the system is transitory, i.e., it is autonomous except on some compact interval of time. We first study the past and future vector fields that determine the system outside the interval of time dependence. Then we build the transition map numerically and discuss the influence of the transitory shift on the solutions behavior.
Keywords: FitzHugh–Nagumo model, transitory system, separatrix, attractors.
Mots-clés : limit cycles
@article{ND_2018_14_2_a1,
     author = {K. E. Morozov},
     title = {Transitory {Shift} in the {FitzHugh{\textendash}Nagumo} {Model}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {169--177},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_2_a1/}
}
TY  - JOUR
AU  - K. E. Morozov
TI  - Transitory Shift in the FitzHugh–Nagumo Model
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 169
EP  - 177
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_2_a1/
LA  - en
ID  - ND_2018_14_2_a1
ER  - 
%0 Journal Article
%A K. E. Morozov
%T Transitory Shift in the FitzHugh–Nagumo Model
%J Russian journal of nonlinear dynamics
%D 2018
%P 169-177
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_2_a1/
%G en
%F ND_2018_14_2_a1
K. E. Morozov. Transitory Shift in the FitzHugh–Nagumo Model. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 169-177. http://geodesic.mathdoc.fr/item/ND_2018_14_2_a1/

[1] Hodgkin, A. L. and Huxley, A. F., “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”, J. Physiol., 117:4 (1952), 500–544 | DOI

[2] FitzHugh, R., “Impulses and Physiological States in Theoretical Models of Nerve Membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI

[3] Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, Mass., 2007, 521 pp. | MR

[4] Mosovsky, B. A. and Meiss, J. D., “Transport in Transitory Dynamical Systems”, SIAM J. Appl. Dyn. Syst., 10:1 (2011), 35–65 | DOI | MR | Zbl

[5] Morozov, A. D. and Morozov, K. E., “Transitory Shift in the Flutter Problem”, Nelin. Dinam., 11:3 (2015), 447–457 (Russian) | DOI | MR | Zbl

[6] Morozov, A. D., Morozov, K. E., “Transitory Shift in the Pendular Type Equations”, Nelin. Dinam., 12:4 (2016), 577–589 | DOI | MR

[7] Rocsoreanu, C., Georgescu, A., and Giurgiteanu, N., The FitzHugh – Nagumo Model: Bifurcation and Dynamics, Springer, Dordrecht, 2000, xii, 238 pp. | MR

[8] Ringkvist, M. and Zhou, Y., “On the Dynamical Behaviour of FitzHugh – Nagumo Systems: Revisited”, Nonlinear Anal., 71:7–8 (2009), 2667–2687 | DOI | MR | Zbl

[9] Prokin, I. S., Simonov, A. U., and Kazancev, V. B., Mathematical Modelling of Neurodynamical Systems, Nighegorodsk. Univ., Nighny Novgorod, 2012, 41 pp. (Russian)

[10] Bautin, N. N., Behavior of Dynamical Systems near to the Boundaries of Stability, Nauka, Moscow, 1984, 176 pp. (Russian) | MR

[11] Andronov, A. A., Leontovich, E. A., Gordon, I. I., and Maier, A. G., Theory of Bifurcations of Dynamic Systems on a Plane, Wiley, New York, 1973, xiv+482 pp. | MR

[12] Mishenko, E. F. and Rozov, N. Kh., Differential Equations with Small Parameters and Relaxation Ocsillations, Plenum, New York, 1980, 228 pp. | MR