Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_2_a0, author = {R. M. Rozental and O. B. Isaeva and N. S. Ginzburg and I. V. Zotova and A. S. Sergeev and A. G. Rozhnev}, title = {Characteristics of {Chaotic} {Regimes} in a {Space-distributed} {Gyroklystron} {Model} with {Delayed} {Feedback}}, journal = {Russian journal of nonlinear dynamics}, pages = {155--168}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_2_a0/} }
TY - JOUR AU - R. M. Rozental AU - O. B. Isaeva AU - N. S. Ginzburg AU - I. V. Zotova AU - A. S. Sergeev AU - A. G. Rozhnev TI - Characteristics of Chaotic Regimes in a Space-distributed Gyroklystron Model with Delayed Feedback JO - Russian journal of nonlinear dynamics PY - 2018 SP - 155 EP - 168 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_2_a0/ LA - en ID - ND_2018_14_2_a0 ER -
%0 Journal Article %A R. M. Rozental %A O. B. Isaeva %A N. S. Ginzburg %A I. V. Zotova %A A. S. Sergeev %A A. G. Rozhnev %T Characteristics of Chaotic Regimes in a Space-distributed Gyroklystron Model with Delayed Feedback %J Russian journal of nonlinear dynamics %D 2018 %P 155-168 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2018_14_2_a0/ %G en %F ND_2018_14_2_a0
R. M. Rozental; O. B. Isaeva; N. S. Ginzburg; I. V. Zotova; A. S. Sergeev; A. G. Rozhnev. Characteristics of Chaotic Regimes in a Space-distributed Gyroklystron Model with Delayed Feedback. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 155-168. http://geodesic.mathdoc.fr/item/ND_2018_14_2_a0/
[1] Afanas'eva, V. V. and Lazerson, A. G., “Dynamical Chaos in Two-Cavity Klystron-Type Oscillators with Delayed Feedback”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 3:5 (1995), 88–99 (Russian)
[2] Anishchenko, V. S., Vadivasova, T. E., and Sosnovtseva, O., “Mechanisms of Ergodic Torus Destruction and Appearance of Strange Nonchaotic Attractors”, Phys. Rev. E, 53:5 (1996), 4451–4456 | DOI | MR
[3] Izv. Vyssh. Uchebn. Zaved. Radiofizika, 54:3 (2011), 185–194 (Russian) | DOI
[4] Atino, A., Bonchomme, G., and Pierre, T., “Ionization Waves: From Stability to Chaos and Turbulence”, Eur. Phys. J. D, 19:1 (2002), 79–87 | DOI
[5] Balyakin, A. A. and Ryskin, N. M., “Peculiarities of Calculation of the Lyapunov Exponents Set in Distributed Self-Oscillated Systems with Delayed Feedback”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 15:6 (2007), 3–21 (Russian) | Zbl
[6] Balyakin, A. A. and Blokhina, E. V., “On the Calculation of the Lyapunov Exponents Set in Distributed Radiophysical Systems”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 16:2 (2008), 87–110 (Russian) | Zbl
[7] Bezruchko, B. P., Bulgakova, L. V., Kuznetsov, S. P., and Trubetskov, D. I., “Stochastic Self-Oscillations and Instability in a Backward Wave Tube”, Radiotekhnika i Elektronika, 28:6 (1983), 1136–1139 (Russian)
[8] Bezruchko, B. P. and Smirnov, D. A., Extracting Knowledge from Time Series: An Introduction to Nonlinear Empirical Modeling, Springer Series in Synergetics, Springer, Heidelberg, 2010, xxii+405 pp. | DOI | MR | Zbl
[9] Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory; P. 2: Numerical Application”, Meccanica, 15 (1980), 9–30 | DOI
[10] Blokhina, E. V., Kuznetsov, S. P., and Rozhnev, A. G., “High-Dimensional Chaos in a Gyrotron”, IEEE Trans. Electron Devices, 54:2 (2007), 188–193 | DOI
[11] Bradley, E. and Kantz, H., “Nonlinear Time-Series Analysis Revisited”, Chaos, 25:9 (2015), 097610, 11
[12] Brown, R., Bryant, P., and Abarbanel, H. D. I., “Computing the Lyapunov Spectrum of a Dynamical System from an Observed Time Series”, Phys. Rev. A, 43:6 (1991), 2787–2806 | DOI | MR
[13] Dikhtyar, V. B. and Kislov, V. Ya., “Calculations of Self-Oscillators with External Delayed Feedback by Run Time Method”, Radiotekhnika i Elektronika, 22:10 (1977), 2141–2147 (Russian)
[14] Dmitrieva, T. V., Ryskin, N. M., Titov, V. N., and Shigaev, A. M., “Complex Dynamics of Simple Models of Distributed Electron-Wave Systems”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 7:6 (1999), 66–81 (Russian)
[15] Eckmann, J.-P. and Ruelle, D., “Ergodic Theory of Chaos and Strange Attractors”, Rev. Modern Phys., 57:3, part 1 (1985), 617–656 | DOI | MR | Zbl
[16] Eckmann, J.-P., Kamphorst, S. O., Ruelle, D., and Gilberto, D., “Lyapunov Exponents from a Time Series”, Phys. Rev. A, 34:6 (1986), 4971–4979 | DOI | MR
[17] Emelyanov, V. V., Girevoy, R. A., Yakovlev, A. V., and Ryskin, N. M., “Time-Domain Particle-in-Cell Modeling of Delayed Feedback Klystron Oscillators”, IEEE Trans. Electron Devices, 61:6 (2014), 1842–1847 | DOI
[18] Ergakov, V. S. and Moiseev, M. A., “Two-Cavity Oscillator with Delayed Feedback”, Radiotekhnika i Elektronika, 31:5 (1986), 962–967 (Russian)
[19] Feudel, U., Kuznetsov, S., and Pikovsky, A., Strange Nonchaotic Attractors: Dynamics between Order and Chaos in Quasiperiodically Forced Systems, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 56, World Sci., Hackensack, N.J., 2006, xii+213 pp. | MR
[20] Ginelli, F., Poggi, P., Turchi, A., Chaté, H., Livi, R., and Politi, A., “Characterizing Dynamics with Covariant Lyapunov Vectors”, Phys. Rev. Lett., 99:13 (2007), 130601, 4 pp. | DOI
[21] Ginelli, F., Chaté, H., Livi, H., and Politi, A., “Covariant Lyapunov Vectors”, J. Phys. A, 46:25 (2013), 1–25 | DOI | MR
[22] Ginzburg, N. S., Rozental, R. M., Sergeev, A. S., and Zotova, I. V., “Time-Domain Model of Gyroklystrons with Diffraction Power Input and Output”, Phys. Plasmas, 23:3 (2016), 033108, 5 pp. | DOI
[23] Ginzburg, N. S., Sergeev, A. S., Zotova, I. V., and Zheleznov, I. V., “Time-Domain Theory of Gyrotron Traveling Wave Amplifiers Operating at Grazing Incidence”, Phys. Plasmas, 22:1 (2015), 012113, 4 pp. | DOI
[24] Ginzburg, N. S., Zavolsky, N. A., and Nusinovich, G. S., “Theory of Non-Stationary Processes in Gyrotrons with Low Q Resonators”, Int. J. Electronics, 61:6 (1986), 881–894 | DOI
[25] Pis'ma Zh. Tekh. Fiz., 36:2 (2010), 62–69 (Russian) | DOI
[26] Hramov, A. E., Koronovskii, A. A., Maximenko, V. A, and Moskalenko, O. I., “Computation of the Spectrum of Spatial Lyapunov Exponents for the Spatially Extended Beam-Plasma Systems and Electron-Wave Devices”, Phys. Plasmas, 19:8 (2012), 082302, 11 pp. | DOI
[27] Isaeva, O. B., Kuznetsov, A. S., and Kuznetsov, S. P., “Hyperbolic Chaos of Standing Wave Patterns Generated Parametrically by a Modulated Pump Source”, Phys. Rev. E, 87:4 (2013), 040901(R), 4 pp. | DOI
[28] Isaeva, O. B., Kuznetsov, A. S., and Kuznetsov, S. P., “Hyperbolic Chaos in Parametric Oscillations of a String”, Nelin. Dinam., 9:1 (2013), 3–10 (Russian) | DOI
[29] Kanno, K., Uchida, A., and Bunsen, M. A., “Complexity and Bandwidth Enhancement in Unidirectionally Coupled Semiconductor Lasers with Time-Delayed Optical Feedback”, Phys. Rev. E, 93:3 (2016), 032206, 11 pp. | DOI | MR
[30] Kaneko, K., “Doubling of Torus”, Progr. Theoret. Phys., 69:6 (1983), 1806–1810 | DOI | MR | Zbl
[31] Kuptsov, P. V., “Computation of Lyapunov Exponents for Spatially Extended Systems: Advantages and Limitations of Various Numerical Methods”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 18:5 (2010), 93–112 (Russian) | Zbl
[32] Kuptsov, P. V. and Parlitz, U., “Theory and Computation of Covariant Lyapunov Vectors”, J. Nonlinear Sci., 22:5 (2012), 727–762 | DOI | MR | Zbl
[33] Kuptsov, P. V., “Fast Numerical Test of Hyperbolic Chaos”, Phys. Rev. E, 85:1 (2012), 015203(R), 4 pp. | DOI
[34] Kuptsov, P. V. and Kuznetsov, S. P., “Numerical Test for Hyperbolicity of Chaotic Dynamics in Time-Delay Systems”, Phys. Rev. E, 94:1 (2016), 010201(R), 7 pp. | DOI | MR
[35] Izv. Vyssh. Uchebn. Zaved. Radiofizika, 25:12 (1982), 1410–1428 (Russian) | DOI
[36] Kuznetsov, S. P., Dynamical Chaos, 2nd ed., Fizmatlit, Moscow, 2006 (Russian)
[37] Izv. Vyssh. Uchebn. Zaved. Radiofizika, 47:5–6 (2004), 383–398 (Russian) | DOI
[38] Nusinovich, G. S., Introduction to the Physics of Gyrotrons, J. Hopkins Univ. Press, Baltimore, 2004, 341 pp.
[39] Pedersen, T. S., Mechelsen, P. K., and Rasmussen, J. J., “Lyapunov Exponents and Particle Dispersion in Drift Wave Turbulence”, Phys. Plasmas, 3:8 (1996), 2939–2950 | DOI | MR
[40] Persson, N. and Nordman, H., “Low-Dimensional Chaotic Attractors in Drift Wave Turbulence”, Phys. Rev. Lett., 67:24 (1991), 3396–3399 | DOI
[41] Ruelle, D., “Ergodic Theory of Differentiable Dynamical Systems”, Inst. Hautes Études Sci. Publ. Math., 1979, no. 50, 27–58 | DOI | MR | Zbl
[42] Sano, M. and Sawada, Y., “Measurement of the Lyapunov Spectrum from a Chaotic Time Series”, Phys. Rev. Lett., 55:10 (1985), 1082–1085 | DOI | MR
[43] Sauer, T. D., Tempkin, J. A., and Yorke, J. A., “Spurious Lyapunov Exponents in Attractor Reconstruction”, Phys. Rev. Lett., 81:20 (1998), 4341–4344 | DOI
[44] Thumm, M., State-of-the-Art of High Power Gyro-Devices and Free Electron Masers, KIT Sci. Rep., 7735, KIT Sci., Karlsruhe, 2017, 196 pp.
[45] Tolkachev, A. A., Levitan, B. A., Solovjev, G. K., Veytsel, V. V., and Farber, V. E., “A Megawatt Power Millimeter-Wave Phased-Array Radar”, IEEE Aerosp. Electron. Syst. Mag., 15:7 (2000), 5–31 | DOI
[46] Izv. Vyssh. Uchebn. Zaved. Radiofizika, 12:8 (1969), 1236–1244 (Russian) | DOI
[47] Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A., “Determining Lyapunov Exponents from a Time Series”, Phys. D, 16:3 (1985), 285–317 | DOI | MR | Zbl
[48] Yang, H., Radons, G., and Kantz, H., “Covariant Lyapunov Vectors from Reconstructed Dynamics: The Geometry behind True and Spurious Lyapunov Exponents”, Phys. Rev. Lett., 109:24 (2012), 244101, 4 pp. | DOI
[49] Izv. Vyssh. Uchebn. Zaved. Radiofizika, 55:5 (2012), 341–350 (Russian) | DOI
[50] Zeng, X., Eykholt, R., and Pielke, R. A., “Estimating the Lyapunov Exponent Spectrum from Short Time Series of Low Precision”, Phys. Rev. Lett., 66:25 (1991), 3229–3232 | DOI