Periodic flow of a viscous fluid with a predetermined pressure and temperature gradient
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 1, pp. 81-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

A procedure is proposed for constructing an approximate periodic solution to the equations of motion of a viscous fluid in an unbounded region in the class of piecewise smooth functions for a given gradient of pressure and temperature for small Reynolds numbers. The procedure is based on splitting the region of the liquid into cells, and finding a solution with boundary conditions corresponding to the periodic function. The cases of two- and three-dimensional flows of a viscous fluid are considered. It is shown that the solution obtained can be regarded as a flow through a periodic system of point particles placed in the cell corners. It is found that, in a periodic flow, the fluid flow rate per unit of cross-sectional area is less than that in a similar Poiseuille flow.
Mots-clés : viscous fluid, gradient
Keywords: periodic solution, piecewise function, pressure, temperature.
@article{ND_2018_14_1_a7,
     author = {M. S. Deryabina and S. I. Martynov},
     title = {Periodic flow of a viscous fluid with a predetermined pressure and temperature gradient},
     journal = {Russian journal of nonlinear dynamics},
     pages = {81--97},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_1_a7/}
}
TY  - JOUR
AU  - M. S. Deryabina
AU  - S. I. Martynov
TI  - Periodic flow of a viscous fluid with a predetermined pressure and temperature gradient
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 81
EP  - 97
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_1_a7/
LA  - ru
ID  - ND_2018_14_1_a7
ER  - 
%0 Journal Article
%A M. S. Deryabina
%A S. I. Martynov
%T Periodic flow of a viscous fluid with a predetermined pressure and temperature gradient
%J Russian journal of nonlinear dynamics
%D 2018
%P 81-97
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_1_a7/
%G ru
%F ND_2018_14_1_a7
M. S. Deryabina; S. I. Martynov. Periodic flow of a viscous fluid with a predetermined pressure and temperature gradient. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 1, pp. 81-97. http://geodesic.mathdoc.fr/item/ND_2018_14_1_a7/

[1] Happel J., Brenner H., Low Reynolds number hydrodynamics with special applications to particulate media, Prentice-Hall, Englewood Cliffs, N.J., 1965

[2] Gray W. G., Miller C. T., Introduction to the thermodynamically constrained averaging theory for porous medium systems, Springer, Cham, 2014, 582 pp.

[3] Deryabina M. S., Martynov S. I., “Simulation of the viscous flow with particles through cell porous medium”, Vychisl. Mekh. Sploshn. Sred, 9:4 (2016), 420–429 (Russian)

[4] Brady J. F., Durlofsky L. J., “The sedimentation rate of disordered suspensions”, Phys. Fluids, 31 (1988), 717–727 | DOI

[5] Hasimoto H., “On the periodic fundamental solutions of the Stokes' equations and their application to viscous flow past a cubic array of spheres”, J. Fluid Mech., 5 (1959), 317–328 | DOI

[6] Zick A. A., Homsy G. M., “Stokes flow through periodic array of spheres”, J. Fluid Mech., 115 (1982), 13–26 | DOI

[7] Mo G., Sangani A. S., “A method for computing flow interactions among spherical objects and its application to suspensions of drops and porous particles”, Phys. Fluids, 6:5 (1994), 1637–1652 | DOI

[8] Martynov S. I., “Particle interaction in a flow with a parabolic velocity profile”, Fluid Dynam., 35:1 (2000), 68–74 | DOI

[9] Martynov S. I., “Hydrodynamic interaction of particles”, Fluid Dynam., 33:2 (1998), 245–251 | DOI

[10] Martynov S. I., “Viscous flow past a periodic array of spheres”, Fluid Dynam., 37:6 (2002), 889–895 | DOI

[11] Martynov S. I., Syromyasov A. O., “Symmetry of a periodic array of particles and a viscous fluid flow in the Stokes approximation”, Fluid Dynam., 42:3 (2007), 340–353 | DOI

[12] Aristov S. N., Polyanin A. D., “Exact solutions of three-dimensional nonstationary Navier – Stokes equations”, Dokl. Akad. Nauk, 427:1 (2009), 35–40 (Russian)

[13] Aristov S. N., Prosviryakov E. Yu., “Non-uniform currents of Couette”, Nelin. Dinam., 10:2 (2014), 177–182 (Russian)

[14] Knyazev D. V., Kolpakov I. Yu., “Exact solutions of the problem of the flow of a viscous fluid in a cylindrical region with a varying radius”, Nelin. Dinam., 11:1 (2015), 89–97 (Russian)

[15] Deryabina M. S., Martynov S. I., “Construction of periodic solutions equations of motion of a viscous fluid with a predetermined pressure gradient”, Zh. SVMO, 18:3 (2016), 187–193 (Russian)

[16] Landau L. D., Lifshitz E. M., Course of theoretical physics: Vol. 6. Fluid mechanics, 2nd ed., Butterworth/Heinemann, Oxford, 2003, 552 pp.

[17] Sveshnikov A. G., Bogolyubov A. N., Kravtsov V. V., Lectures on mathematical physics, MGU, Moscow, 1993 (Russian)