Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_1_a7, author = {M. S. Deryabina and S. I. Martynov}, title = {Periodic flow of a viscous fluid with a predetermined pressure and temperature gradient}, journal = {Russian journal of nonlinear dynamics}, pages = {81--97}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_1_a7/} }
TY - JOUR AU - M. S. Deryabina AU - S. I. Martynov TI - Periodic flow of a viscous fluid with a predetermined pressure and temperature gradient JO - Russian journal of nonlinear dynamics PY - 2018 SP - 81 EP - 97 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_1_a7/ LA - ru ID - ND_2018_14_1_a7 ER -
%0 Journal Article %A M. S. Deryabina %A S. I. Martynov %T Periodic flow of a viscous fluid with a predetermined pressure and temperature gradient %J Russian journal of nonlinear dynamics %D 2018 %P 81-97 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2018_14_1_a7/ %G ru %F ND_2018_14_1_a7
M. S. Deryabina; S. I. Martynov. Periodic flow of a viscous fluid with a predetermined pressure and temperature gradient. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 1, pp. 81-97. http://geodesic.mathdoc.fr/item/ND_2018_14_1_a7/
[1] Happel J., Brenner H., Low Reynolds number hydrodynamics with special applications to particulate media, Prentice-Hall, Englewood Cliffs, N.J., 1965
[2] Gray W. G., Miller C. T., Introduction to the thermodynamically constrained averaging theory for porous medium systems, Springer, Cham, 2014, 582 pp.
[3] Deryabina M. S., Martynov S. I., “Simulation of the viscous flow with particles through cell porous medium”, Vychisl. Mekh. Sploshn. Sred, 9:4 (2016), 420–429 (Russian)
[4] Brady J. F., Durlofsky L. J., “The sedimentation rate of disordered suspensions”, Phys. Fluids, 31 (1988), 717–727 | DOI
[5] Hasimoto H., “On the periodic fundamental solutions of the Stokes' equations and their application to viscous flow past a cubic array of spheres”, J. Fluid Mech., 5 (1959), 317–328 | DOI
[6] Zick A. A., Homsy G. M., “Stokes flow through periodic array of spheres”, J. Fluid Mech., 115 (1982), 13–26 | DOI
[7] Mo G., Sangani A. S., “A method for computing flow interactions among spherical objects and its application to suspensions of drops and porous particles”, Phys. Fluids, 6:5 (1994), 1637–1652 | DOI
[8] Martynov S. I., “Particle interaction in a flow with a parabolic velocity profile”, Fluid Dynam., 35:1 (2000), 68–74 | DOI
[9] Martynov S. I., “Hydrodynamic interaction of particles”, Fluid Dynam., 33:2 (1998), 245–251 | DOI
[10] Martynov S. I., “Viscous flow past a periodic array of spheres”, Fluid Dynam., 37:6 (2002), 889–895 | DOI
[11] Martynov S. I., Syromyasov A. O., “Symmetry of a periodic array of particles and a viscous fluid flow in the Stokes approximation”, Fluid Dynam., 42:3 (2007), 340–353 | DOI
[12] Aristov S. N., Polyanin A. D., “Exact solutions of three-dimensional nonstationary Navier – Stokes equations”, Dokl. Akad. Nauk, 427:1 (2009), 35–40 (Russian)
[13] Aristov S. N., Prosviryakov E. Yu., “Non-uniform currents of Couette”, Nelin. Dinam., 10:2 (2014), 177–182 (Russian)
[14] Knyazev D. V., Kolpakov I. Yu., “Exact solutions of the problem of the flow of a viscous fluid in a cylindrical region with a varying radius”, Nelin. Dinam., 11:1 (2015), 89–97 (Russian)
[15] Deryabina M. S., Martynov S. I., “Construction of periodic solutions equations of motion of a viscous fluid with a predetermined pressure gradient”, Zh. SVMO, 18:3 (2016), 187–193 (Russian)
[16] Landau L. D., Lifshitz E. M., Course of theoretical physics: Vol. 6. Fluid mechanics, 2nd ed., Butterworth/Heinemann, Oxford, 2003, 552 pp.
[17] Sveshnikov A. G., Bogolyubov A. N., Kravtsov V. V., Lectures on mathematical physics, MGU, Moscow, 1993 (Russian)