Steady convective Coutte flow for quadratic heating of the lower boundary fluid layer
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 1, pp. 69-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents an exact solution to the Oberbeck – Boussinesq system which describes the flow of a viscous incompressible fluid in a plane channel heated by a linear point source. The exact solutions obtained generalize the isothermal Couette flow and the convective motions of Birikh – Ostroumov. A characteristic feature of the proposed class of exact solutions is that they integrate the horizontal gradient of the hydrodynamic fields. An analysis of the solutions obtained is presented and thus a criterion is obtained which explains the existence of countercurrents moving in a nonisothermal viscous incompressible fluid.
Mots-clés : Couette flow, exact solution
Keywords: Birikh – Ostroumova flow, planar Rayleigh – Benard convection, quadratic heating, counterflow.
@article{ND_2018_14_1_a6,
     author = {V. V. Privalova and E. Yu. Prosviryakov},
     title = {Steady convective {Coutte} flow for quadratic heating of the lower boundary fluid layer},
     journal = {Russian journal of nonlinear dynamics},
     pages = {69--79},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_1_a6/}
}
TY  - JOUR
AU  - V. V. Privalova
AU  - E. Yu. Prosviryakov
TI  - Steady convective Coutte flow for quadratic heating of the lower boundary fluid layer
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 69
EP  - 79
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_1_a6/
LA  - ru
ID  - ND_2018_14_1_a6
ER  - 
%0 Journal Article
%A V. V. Privalova
%A E. Yu. Prosviryakov
%T Steady convective Coutte flow for quadratic heating of the lower boundary fluid layer
%J Russian journal of nonlinear dynamics
%D 2018
%P 69-79
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_1_a6/
%G ru
%F ND_2018_14_1_a6
V. V. Privalova; E. Yu. Prosviryakov. Steady convective Coutte flow for quadratic heating of the lower boundary fluid layer. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 1, pp. 69-79. http://geodesic.mathdoc.fr/item/ND_2018_14_1_a6/

[1] Couette M., “Études sur le frottement des liquides”, Ann. Chim. Phys. (6), 21 (1890), 433–510

[2] Stokes G. G., “On the effect of the internal friction of fluid on the motion of pendulums”, Trans. Camb. Philos. Soc., 9, part 2 (1851), 8–106

[3] Landau L. D., Lifshitz E. M., Course of theoretical physics, v. 6, Fluid mechanics, 2nd ed., Butterworth/Heinemann, Oxford, 2003, 552 pp.

[4] Getling A. V., Rayleigh – Bénard convection: Structures and dynamics, Adv. Ser. Nonlinear Dyn., 11, World Sci., Singapore, 1998, 245 pp. | DOI

[5] Kabanov A. S., The theory of free convection from local sources with meteorological applications, Gidrometeoizdat, Leningrad, 1984 (Russian)

[6] Zimin V. D., Frieck P. G., The turbulent convection, Nauka, Moscow, 1988 (Russian)

[7] Aristov S. N., Schwarz K. G., Vortex flows of advective nature in a rotating fluid layer, Perm Gos. Univ., Perm, 2006 (Russian)

[8] Aristov S. N., Schwarz K. G., Vortex flows in thin fluid layers, Vyatka Gos. Univ., Kirov, 2011 (Russian)

[9] Hiemenz K., “Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder”, Dingler's Polytechn. J., 326 (1911), 321–324

[10] Aristov S. N., Privalova V. V., Prosviryakov E. Yu., “Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer”, Nelin. Dinam., 12:2 (2016), 167–178 | DOI

[11] Ostroumov G. A., Free convection under the condition of the internal problem (NACA-TM-1407, Rept-4281), NASA, Washington, D.C., 1958, 239 pp.

[12] Birikh R. V., “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 7:3 (1966), 43–44 | DOI

[13] Aristov S. N., Prosviryakov E. Yu., “Inhomogeneous Couette flows”, Nelin. Dinam., 10:2 (2014), 177–182 (Russian)

[14] Aristov S. N., Prosviryakov E. Yu., “On one class of analytic solutions of the stationary axisymmetric convection Bénard – Marangoni viscous incompressible fluid”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2013, no. 3(32), 110–118 (Russian) | DOI

[15] Aristov S. N., Prosviryakov E. Yu., “Exact solutions of thermocapillary convection in a localized heating of a plane layer of a viscous incompressible fluid”, Vestn. Kazan. Gos. Tekhn. Univ., 2014, no. 3, 7–12 (Russian)

[16] Aristov S. N., Prosviryakov E. Yu., “On layered flows of planar free convection”, Nelin. Dinam., 9:4 (2013), 651–657 (Russian)

[17] Andreev V. K., Gaponenko Yu. A., Goncharova O. N., Pukhnachev V. V., Mathematical models of convection, De Gruyter Stud. Math. Phys., 5, de Gruyter, Berlin, 2012, xv, 417 pp.

[18] Andreev V. K., Birikh solution of convection equations and some of its generalizations, Preprint No 1–10, Inst. Computer Modeling, Sib. Branch, Russian Acad. of Sci., Krasnoyarsk, 2010 (Russian)

[19] Goncharova O., Kabov O., “Gas flow and thermocapillary effects of fluid flow dynamics in a horizontal layer”, Microgravity Sci. Technol., 21, suppl. 1 (2009), 129–137 | DOI

[20] Sidorov A. F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, J. Appl. Mech. Tech. Phys., 30:2 (1989), 197–203 | DOI

[21] Broman G. I., Rudenko O. V., “Submerged Landau jet: Exact solutions, their meaning and application”, Physics–Uspekhi, 53:1 (2010), 91–98 | DOI

[22] Skul'skii O. I., Aristov S. N., Mechanics of anomalous viscous fluids, R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2003 (Russian)

[23] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1:1 (1957), 391–395 | DOI

[24] Nemenyi P. F., “Recent developments in inverse and semi-inverse methods in the mechanics of continua”, Advances in Applied Mechanics, v. 2, eds. R. von Mises, Th. von Kármán, Acad. Press, New York, 1951, 123–151 | DOI

[25] Riabouchinsky D., “Quelques considérations sur les mouvements plans rotationnels d’un liquide”, C. R. Hebd. Acad. Sci., 179 (1924), 1133–1136

[26] Galaktionov V. A., Svirshchevskii S. R., Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics, CRC, Boca Raton, Fla., 2007, 528 pp.

[27] Aristov S. N., Knyazev D. V., Polyanin A. D., “Exact solutions of the Navier – Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2009), 642–662 | DOI

[28] Aristov S. N., Polyanin A. D., “New classes of exact solutions of Euler equations”, Dokl. Phys., 53:3 (2008), 166–171 | DOI

[29] Pukhnachev V. V., “Symmetries in Navier – Stokes equations”, Uspekhi Mekh., 4:1 (2006), 6–76 (Russian)

[30] Pukhnachev V. V., “Group properties of the equations of Navier – Stokes in the planar case”, Prikl. Mekh. Tekhn. Fiz., 1:1 (1960), 83–90 (Russian)

[31] Ibragimov N. H., CRC handbook of Lie group to differential equations: Vol. 2. Applications in engineering and physical sciences, CRC Press, Boca Raton, Fla., 1995, 546 pp.

[32] Polyanin A. D., Kutepov A. M., Vyazmin A. V., Kazenin D. A., Hydrodynamics, mass and heat transfer in chemical engineering, Taylor Francis, London, 2002, 406 pp.

[33] Aristov S. N., Knyazev D. V., “Viscous fluid flow between moving parallel plates”, Fluid Dynam., 47:4 (2012), 476–482 | DOI

[34] Petrov A. G., “Exact solution of the Navier – Stokes equations in a fluid layer between the moving parallel plates”, J. Appl. Mech. Tech. Phys., 53:5 (2012), 642–646 | DOI

[35] Korotaev G. K., Mikhailova E. N., Shapiro N. B., Theory of equatorial countercurrents in the World Ocean, Naukova Dumka, Kiev, 1986 (Russian)