Application of the hydrodynamic substitution for systems of equations with the same principal part
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 1, pp. 53-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of quasi-linear differential equations with the same the principal part are considered. Their connection with the reduced system of Euler equations is established, which results from the hydrodynamic substitution in the kinetic Liouville and Vlasov equations. When considering the momentum equation of the Euler system, it turns out that it reduces to a special form such as Liouville – Jacobi equation. This equation can also be investigated using a hydrodynamic substitution, but of conjugate type. The application of this substitution (of the second order) makes it possible to symmetrize the technique of applying hydrodynamic substitution and to extend the class of equations of hydrodynamic type to which systems of (in the general case non-Hamiltonian) first-order autonomous differential equations. Examples are given of the use of the developed formalism for systems of gravitating particles in post-Newtonian approximation and the hydrodynamic systems described by Monge potentials, with the aim of constructing the Liouville – Jacobi equations and applying to them a modified hydrodynamic substitution.
Mots-clés : Liouville equation, hydrodynamic substitution
Keywords: quasi-linear equations, Monge potentials, equations with the same principal part.
@article{ND_2018_14_1_a4,
     author = {N. N. Fimin and V. M. Chechetkin},
     title = {Application of the hydrodynamic substitution for systems of equations with the same principal part},
     journal = {Russian journal of nonlinear dynamics},
     pages = {53--61},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_1_a4/}
}
TY  - JOUR
AU  - N. N. Fimin
AU  - V. M. Chechetkin
TI  - Application of the hydrodynamic substitution for systems of equations with the same principal part
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 53
EP  - 61
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_1_a4/
LA  - ru
ID  - ND_2018_14_1_a4
ER  - 
%0 Journal Article
%A N. N. Fimin
%A V. M. Chechetkin
%T Application of the hydrodynamic substitution for systems of equations with the same principal part
%J Russian journal of nonlinear dynamics
%D 2018
%P 53-61
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_1_a4/
%G ru
%F ND_2018_14_1_a4
N. N. Fimin; V. M. Chechetkin. Application of the hydrodynamic substitution for systems of equations with the same principal part. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 1, pp. 53-61. http://geodesic.mathdoc.fr/item/ND_2018_14_1_a4/

[1] Vlasov A. A., Statistical distribution functions, Nauka, Moscow, 1966 (Russian)

[2] Braginskii S. I., “The phenomena of transport in plasma”, Reviews of plasma physics, v. 1, ed. M. A. Leontovich, Gosatomizdat, Moscow, 1963, 183–272 (Russian)

[3] Vedenyapin V. V., Kinetic equations of Boltzmann and Vlasov, Fizmatlit, Moscow, 2001 (Russian)

[4] Odesskii A. V., Pavlov M. V., Sokolov V. V., “Classification of integrable Vlasov-type equations”, Theoret. and Math. Phys., 154:2 (2008), 209–219 | DOI | DOI

[5] Vedenyapin V. V., Fimin N. N., “The Liouville equation, the hydrodynamic substitution, and the Hamilton – Jacobi equation”, Dokl. Math., 86:2 (2012), 697–699 | DOI

[6] Vedenyapin V. V., Fimin N. N., Negmatov M. A., Equations of the Vlasov and Liouville type, their macroscopic, energetic and hydrodynamic consequences, Keldysh Institute of Applied Mathematics, Moscow, 2016

[7] Vedenyapin V. V., Fimin N. N., “The Hamilton – Jacobi method in the non-Hamiltonian situation and the hydrodynamic substitution”, Dokl. Math., 91:2 (2015), 154–157 | DOI | DOI

[8] Vedenyapin V. V., Fimin N. N., “The Hamilton – Jacobi method for non–Hamiltonian systems”, Nelin. Dinam., 11:2 (2015), 279–286 (Russian)

[9] Kozlov V. V., “The hydrodynamics of Hamiltonian systems”, Mosc. Univ. Mech. Bull., 38:6 (1983), 9–23

[10] Kozlov V. V., Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer, Berlin, 1996, xii+378 pp.

[11] Kozlov V. V., General theory of vortices, Encyclopaedia Math. Sci., 67, Springer, Berlin, 2003, 184 pp. | DOI

[12] Courant R., Hilbert D., Methods of mathematical physics, v. 2, Interscience, New York, 1962, xxii + 830 pp.

[13] Rozhdestvenskii B. L., Yanenko N. N., Systems of quasilinear equations, Nauka, Moscow, 1978 (Russian)

[14] Jacobi C. G. J., “Über die Reduction der Integration der partiellen Differentialgleichungen erster Ordnung zwischen Irgend einer Zahl Variabeln auf die Integration eines einzigen Systemes gewohnlicher Differentialgleichungen”, J. Reine Angew. Math., 1837:17 (1837), 97–162 ; Jacobi C. G. J., Gesammelte Werke, v. 4, ed. K. Weierstrass, Reiner, Berlin, 1886 | DOI

[15] Saltykow N. N., “Étude sur les intégrales d'un système des équations différentielles aux dérivées partielles de plusieurs fonctions inconnues”, J. Math. Pures Appl., 3 (1897), 423–428

[16] Santilli R. M., Foundations of theoretical mechanics, v. 2, Birkhoffian generalizations of Hamiltonian mechanics, Springer, New York, 1983, 372 pp.

[17] Fimin N. N., Chechetkin V. M., Dynamics of particles in the original Schwarzschield metric, Preprint No 49, Keldysh Institute of Applied Mathematics, Moscow, 2015 (Russian)

[18] Monge G., “Supplement, où l'on fait voir que les équations aux différences ordinaires, pour lesquelles les conditions d'intégrabilité ne sont pas satisfaites, sont susceptibles d'une véritable intégration, et que c'est de cette intégration que dépend celle des équations aux différences partielles élevées”, Mém. Acad. Sci. Paris, 1784, 502–576

[19] Clebsch A., “Über die Integration der hydrodynamischen Gleichungen”, J. Reine Angew. Math., 56 (1859), 1–10 | DOI

[20] Seliger R. L., Whitham G. B., “Variational principles in continuum mechanics”, Proc. Roy. Soc. London Ser. A, 305:1480 (1968), 1–25 | DOI

[21] van Saarloos W., “A canonical transformation relating the Lagrangian and Eulerian description of ideal hydrodynamics”, Phys. A, 108:2–3 (1981), 557–566