Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_1_a3, author = {A. A. Burov and A. D. Guerman and E. A. Raspopova and V. I. Nikonov}, title = {On the use of the $K$-means algorithm for determination of mass distributions in dumbbell-like celestial bodies}, journal = {Russian journal of nonlinear dynamics}, pages = {45--52}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_1_a3/} }
TY - JOUR AU - A. A. Burov AU - A. D. Guerman AU - E. A. Raspopova AU - V. I. Nikonov TI - On the use of the $K$-means algorithm for determination of mass distributions in dumbbell-like celestial bodies JO - Russian journal of nonlinear dynamics PY - 2018 SP - 45 EP - 52 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_1_a3/ LA - ru ID - ND_2018_14_1_a3 ER -
%0 Journal Article %A A. A. Burov %A A. D. Guerman %A E. A. Raspopova %A V. I. Nikonov %T On the use of the $K$-means algorithm for determination of mass distributions in dumbbell-like celestial bodies %J Russian journal of nonlinear dynamics %D 2018 %P 45-52 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2018_14_1_a3/ %G ru %F ND_2018_14_1_a3
A. A. Burov; A. D. Guerman; E. A. Raspopova; V. I. Nikonov. On the use of the $K$-means algorithm for determination of mass distributions in dumbbell-like celestial bodies. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 1, pp. 45-52. http://geodesic.mathdoc.fr/item/ND_2018_14_1_a3/
[1] Beletsky V. V., “Generalized restricted circular three-body problem as a model for dynamics of binary asteroids”, Cosmic Research, 45:5 (2007), 408–416 | DOI
[2] Beletskii V. V., Ponomareva O. N., “A parametric analysis of relative equilibrium stability in the gravitational field”, Kosmicheskie Issledovaniya, 28:5 (1990), 664–675 (Russian)
[3] Beletskii V. V., Rodnikov A. V., “Stability of triangle libration points in generalized restricted circular three-body problem”, Cosmic Research, 46:1 (2008), 40–48 | DOI
[4] Burov A. A., Guerman A. D., Kosenko I. I., Nikonov V. I., “On the gravity of dumbbell-like bodies represented by a pair of intersecting balls”, Nelin. Dinam., 13:2 (2017), 243–256 (Russian)
[5] de La Vallée Poussin Ch.-J., Leçons de mécanique analytique, v. 1, Vecteurs, cinematique, dynamique du point, statique, 2nd ed., UCL, Louvain, 1932
[6] Duboshin G. N., “On one particular case of the problem of the translational-rotational motion of two bodies”, Sov. Astron., 3:1 (1959), 154–165
[7] Karapetyan A. V., Sakhokia I. D., “On bifurcation and stability of steady motions of two gravitating bodies”, J. Appl. Math. Mech., 56:6 (1992), 839–842 | DOI
[8] Rodnikov A. V., “Triangular libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers”, Nelin. Dinam., 10:2 (2014), 213–222 (Russian)
[9] Bartczak P., Breiter S., “Double material segment as the model of irregular bodies”, Celestial Mech. Dynam. Astronom., 86:2 (2003), 131–141 | DOI
[10] Bartczak P., Breiter S., Jusiel P., “Ellipsoids, material points and material segments”, Celestial Mech. Dynam. Astronom., 96:1 (2006), 31–48 | DOI
[11] Benner L. A. M., Hudson R. S., Ostro S. J., Rosema K. D., Giorgini J. D., Yeomans D. K., Jurgens R. F., Mitchell D. L., Winkler R., Rose R., Slade M. A., Thomas M. L., Pravec P., “Radar observations of asteroid $2063$ Bacchus”, Icarus, 139:2 (1999), 309–327 | DOI
[12] Chanut T. G. G., Aljbaae S., Carruba V., “Mascon gravitation model using a shaped polyhedral source”, Mon. Not. R. Astron. Soc., 450:4 (2015), 3742–3749 | DOI
[13] Herrera-Succarat E., The full problem of two and three bodies: Application to asteroids and binaries, Univ. of Surrey, Guildford, 2012, 172 pp.
[14] Herrera-Succarat E., Palmer P. L., Roberts M., “Modeling the gravitational potential of a nonspherical asteroid”, J. Guid. Control Dyn., 36:3 (2013), 790–798 | DOI
[15] Hitt D. L., Pearl J. M., “Asteroid gravitational models using mascons derived from polyhedral sources”, AIAA/AAS Astrodynamics Specialist Conference (Long Beach, Calif., Sept 2016), 12 pp.
[16] Hudson R. S., “Three-dimensional reconstruction of asteroids from radar observations”, Remote Sensing Rev., 8 (1993), 195–203 | DOI
[17] Kholshevnikov K. V., Shaidulin V. Sh., “Existence of a class of irregular bodies with a higher convergence rate of Laplace series for the gravitational potential”, Celestial Mech. Dynam. Astronom, 122:4 (2015), 391–403 | DOI
[18] NEAR collected shape and gravity models, PDS Asteroid/Dust Archive } {\tt https://sbn.psi.edu/pds/resource/nearmod.html
[19] Park R. S., Werner R. A., Bhaskaran S., “Estimating small-body gravity field from shape model and navigation data”, J. Guid. Control Dyn., 33:1 (2010), 212–221 | DOI
[20] Pucacco J., Boccaletti D., Belmonte C., “On the orbit structure of the logarithmic potential”, Astrophys. J., 669:1 (2007), 202–217 | DOI
[21] Riaguas A., Elipe A., Lara M., “Periodic orbits around a massive straight segment”, Celestial Mech. Dynam. Astronom., 73:1–4 (1999), 169–178 | DOI
[22] Riaguas A., Elipe A., López-Moratalla T., “Non-linear stability of the equilibria in the gravity field of a finite straight segment”, Celestial Mech. Dynam. Astronom., 81:3 (2001), 235–248 | DOI
[23] Small body radar shape models, PDS Asteroid/Dust Archive } {\tt https://sbn.psi.edu/pds/resource/rshape.html
[24] Steinhaus H., “Sur la division des corps matériels en parties”, Bull. Acad. Polon. Sci. Cl. III, 4 (1956), 801–804
[25] Takahashi Yu., Scheeres D. J., Werner R. A., “Surface gravity fields for asteroids and comets”, J. Guid. Control Dyn., 36:2 (2013), 362–374 | DOI
[26] Takahashi Yu., Scheeres D. J., “Small body surface gravity fields via spherical harmonic expansions”, Celestial Mech. Dynam. Astronom., 119:2 (2014), 169–206 | DOI
[27] Turconi A., Palmer Ph., Roberts M., “Efficient modelling of small bodies gravitational potential for autonomous proximity operations”, Astrodynamics Network AstroNet-II, Astrophys. Space Sci. Proc., 44, eds. G. Gómez, J. J. Masdemont, Springer, Cham, 2016, 257–272 | DOI
[28] Werner R. A., “Spherical harmonic coefficients for the potential of a constant-density polyhedron”, Comput. Geosci., 23:10 (1997), 1071–1077 | DOI
[29] Werner R. A., “The gravitational potential of a homogeneous polyhedron or don't cut corners”, Celestial Mech. Dynam. Astronom., 59:3 (1994), 253–278 | DOI
[30] Werner R. A., Scheeres D. J., “Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia”, Celestial Mech. Dynam. Astronom., 65:3 (1996), 313–344