Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_1_a2, author = {O. E. Vasiukova and L. A. Klimina}, title = {Modelling of self-oscillations of a controlled pendulum with respect to a friction torque depending on a normal reaction in a joint}, journal = {Russian journal of nonlinear dynamics}, pages = {33--44}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_1_a2/} }
TY - JOUR AU - O. E. Vasiukova AU - L. A. Klimina TI - Modelling of self-oscillations of a controlled pendulum with respect to a friction torque depending on a normal reaction in a joint JO - Russian journal of nonlinear dynamics PY - 2018 SP - 33 EP - 44 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_1_a2/ LA - ru ID - ND_2018_14_1_a2 ER -
%0 Journal Article %A O. E. Vasiukova %A L. A. Klimina %T Modelling of self-oscillations of a controlled pendulum with respect to a friction torque depending on a normal reaction in a joint %J Russian journal of nonlinear dynamics %D 2018 %P 33-44 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2018_14_1_a2/ %G ru %F ND_2018_14_1_a2
O. E. Vasiukova; L. A. Klimina. Modelling of self-oscillations of a controlled pendulum with respect to a friction torque depending on a normal reaction in a joint. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 1, pp. 33-44. http://geodesic.mathdoc.fr/item/ND_2018_14_1_a2/
[1] Armstrong-Hélouvry B., Dupont P., De Wit C. C., “A survey of models, analysis tools and compensation methods for the control of machines with friction”, Automatica, 30:7 (1994), 1083–1138 | DOI
[2] Amabili M., “Nonlinear damping in large-amplitude vibrations: modelling and experiments”, Nonlinear Dynam., 2017, 1–14
[3] Beznos A. V., Grishin A. A., Lensky A. V., Okhotsimsky D. E., Formal'sky A. M., “A flywheel use-based control for a pendulum with a fixed suspension point”, J. Comput. Syst. Sci. Int., 43:1 (2004), 22–33
[4] Formalskii A. M., Stabilization and motion control of unstable objects, de Gruyter, Berlin, 2015, 239 pp.
[5] Iwatani M., Kikuuwe R., “An identification procedure for rate-dependency of friction in robotic joints with limited motion ranges”, Mechatronics, 36 (2016), 36–44 | DOI
[6] Kermani M. R., Patel R. V., Moallem M., “Friction identification and compensation in robotic manipulators”, IEEE Trans. Instrum. Meas., 56:6 (2007), 2346–2353 | DOI
[7] Vakil M., Fotouhi R., Nikiforuk P. N., “Energy-based approach for friction identification of robotic joints”, Mechatronics, 21:3 (2011), 614–624 | DOI
[8] Aleksandrov V. V., Lemak S. S., Parusnikov N. A., Lectures on the mechanics of controlled systems, Max Press, Moscow, 2012 (Russian)
[9] Bautin N. N., Leontovich E. A., Methods and techniques of the qualitative study of dynamical systems on the plane, Nauka, Moscow, 1990 (Russian)
[10] Vasiukova O. E., “On the possibility of identification of friction coefficients in a hinge of a physical pendulum via analysis of amplitudes of steady oscillations”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 2018
[11] Klimina L. A., Lokshin B. Ya., “On a constructive method of search for rotary and oscillatory modes in autonomous dynamical systems”, Nelin. Dinam., 13:1 (2017), 25–40 (Russian)