Hill’s curves and libration points in the low-thrust restricted circular threebody problem
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 543-556.

Voir la notice de l'article provenant de la source Math-Net.Ru

The plane circular restricted three-body problem is considered, where the massless body is a constant low-thrust spacecraft. It is assumed that the vector of low-thrust is directed along the $Ox$ axis connecting the main bodies. The problem of plotting a family of one-parameter Hill’s curves is investigated. The existence conditions of artificial triangular-type and collineartype libration points are obtained. The values of the effective force function at libration points are investigated also. Six different topological types of the family of one-parameter Hill’s curves are described. It is shown that these types differ in the number of critical values of the constant Jacobi integral and in the ordering of these values. For the Earth – Moon system, a family of one-parameter Hill’s curves is plotted for each of the six types.
Keywords: restricted three-body problem, Hill’s curves, libration points, constant low-thrust spacecraft.
@article{ND_2017_13_4_a6,
     author = {P. S. Krasil'nikov},
     title = {Hill{\textquoteright}s curves and libration points in the low-thrust restricted circular threebody problem},
     journal = {Russian journal of nonlinear dynamics},
     pages = {543--556},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_4_a6/}
}
TY  - JOUR
AU  - P. S. Krasil'nikov
TI  - Hill’s curves and libration points in the low-thrust restricted circular threebody problem
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 543
EP  - 556
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_4_a6/
LA  - ru
ID  - ND_2017_13_4_a6
ER  - 
%0 Journal Article
%A P. S. Krasil'nikov
%T Hill’s curves and libration points in the low-thrust restricted circular threebody problem
%J Russian journal of nonlinear dynamics
%D 2017
%P 543-556
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_4_a6/
%G ru
%F ND_2017_13_4_a6
P. S. Krasil'nikov. Hill’s curves and libration points in the low-thrust restricted circular threebody problem. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 543-556. http://geodesic.mathdoc.fr/item/ND_2017_13_4_a6/

[1] Melbourne W. G., Sauer C. G., “Optimum interplanetary rendezvous with power limited vehicles”, AIAA J., 1:1 (1963), 54–60

[2] Lawden D. F., Optimal trajectories for space navigation, Butterworths, London, 1963, 126 pp.

[3] Beletsky V. V., Egorov V. A., “Interplanetary flights with the constant output engines”, Kosmicheskie Issledovaniya, 2:3 (1964), 303–330 (Russian)

[4] Gobitz F. W., “Optimal variable thrust transfer of a power limited rocket between neighboring circular orbits”, AIAA J., 2:2 (1964), 339–343

[5] Johnson D. P., Stumpf L. W., “Perturbation solutions for low thrust rocket trajectories”, AIAA J., 3:10 (1965), 1934–1936

[6] Aliasi G., Mengali G., Quarta A. A., “Artificial equilibrium points for a generalized sail in the circular restricted three-body problem”, Celestial Mech. Dynam. Astronom., 110:4 (2011), 343–368

[7] Baig S., McInnes C. R., “Artificial three-body equilibria for hybrid low-thrust propulsion”, J. Guid. Control Dyn., 31:6 (2008), 1644–1654

[8] Bombardelli C., Peláez J., “On the stability of artificial equilibrium points in the circular restricted three-body problem”, Celest. Mech. Dynam. Astronom., 109:1 (2010), 13–26

[9] Bookless J., McInnes C. R., “Control of Lagrange point orbits using solar sail propulsion”, Acta Astronaut., 62:2–3 (2008), 159–176

[10] Dusek H. M., “Motion in the vicinity of libration points of a generalized restricted three-body model”, Prog. Astronaut. Aeronaut.: Methods in Astrodynamics and Celestial Mechanics (Monterey, Calif., Sept 16–17, 1965), v. 17, A Selection of Technical Papers Based Mainly on the American Institute of Aeronautics and Astronautics and Institute of Navigation Astrodynamics Specialist Conference, eds. R. L. Duncombe, V. G. Szebehely, Acad. Press, New York, 1966, 37–54

[11] Farquhar R. W., The control and use of libration-point satellites, Technical Report NASA-TR-R-346, Goddard Space Flight Center Greenbelt, Washington, D.C., 1970, 129 pp.

[12] Kosenko I. I., “On libration points near a gravitating and rotating triaxial ellipsoid”, J. Appl. Math. Mech., 45:1 (1981), 18–23

[13] Kosenko I. I., “Non-linear analysis of the stability of the libration points of a triaxial ellipsoid”, J. Appl. Math. Mech., 49:1 (1985), 17–24

[14] Kosenko I. I., “On the stability of points of libration of an inhomogeneous triaxial ellipsoid”, J. Appl. Math. Mech., 51:1 (1987), 1–5

[15] Krasil'nikov P. S., Kunitsyn A. L., “On the stabilization of the collinear libration points of the restricted circular three-body problem”, Celestial Mech., 15:1 (1977), 41–51

[16] Krasilnikov P. S., Saraeva A. G., “Poincaré periodic orbits of the first kind in the planar circular restricted problem of three bodies with small acceleration”, Cosmic Research, 53:6 (2015), 469–475

[17] Ranjana K., Kumar V., “On the artificial equilibrium points in a generalized restricted problem of three bodies”, IJAA, 3:4 (2013), 508–516

[18] Kunitsyn A. L., Perezhogin A. A., “On the stability of triangular libration points of the photogravitational restricted circular three-body problem”, Celestial Mech., 18:4 (1978), 395–408

[19] Morimoto M. Y., Yamakawa H., Uesugi K., “Artificial equilibrium points in the low-thrust restricted three-body problem”, J. Guid. Control Dyn., 30:5 (2007), 1563–1567

[20] McInnes C. R., “Artificial Lagrange points for a partially reflecting flat solar sail”, J. Guid. Control Dyn., 22:1 (1999), 185–187

[21] McInnes C. R., McDonald A. J. C., Simmons J. F. L., MacDonald E. W., “Solar sail parking in restricted three-body systems”, J. Guid. Control Dyn., 17:2 (1994), 399–406

[22] Perezhogin A. A., “Stability of the sixth and seventh libration points in the photogravitational restricted circular three-body problem”, Pis'ma v Astron. Zh., 2 (1976), 174–175 (Russian)

[23] Perezhogin A. A., Tureshbaev A. T., “Stability of coplanar libration points in the photo-gravitational restricted three-body problem”, Sov. Astron., 33:4 (1989), 445–448

[24] Szebehely V., Theory of orbits: The restricted problem of three bodies, Acad. Press, New York, 1967, 668 pp.

[25] Waters T. J., McInnes C. R., “Solar sail dynamics in the three-body problem: Homoclinic paths of points and orbits”, Int. J. Non Linear Mech., 43:6 (2008), 490–496