Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_4_a4, author = {A. A. Burov and I. I. Kosenko}, title = {Motion of a satellite with a variable mass distribution in a central field of {Newtonian} attraction}, journal = {Russian journal of nonlinear dynamics}, pages = {519--531}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_4_a4/} }
TY - JOUR AU - A. A. Burov AU - I. I. Kosenko TI - Motion of a satellite with a variable mass distribution in a central field of Newtonian attraction JO - Russian journal of nonlinear dynamics PY - 2017 SP - 519 EP - 531 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_4_a4/ LA - ru ID - ND_2017_13_4_a4 ER -
%0 Journal Article %A A. A. Burov %A I. I. Kosenko %T Motion of a satellite with a variable mass distribution in a central field of Newtonian attraction %J Russian journal of nonlinear dynamics %D 2017 %P 519-531 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2017_13_4_a4/ %G ru %F ND_2017_13_4_a4
A. A. Burov; I. I. Kosenko. Motion of a satellite with a variable mass distribution in a central field of Newtonian attraction. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 519-531. http://geodesic.mathdoc.fr/item/ND_2017_13_4_a4/
[1] Beletskii V. V., Motion of an artificial satellite about its center of mass, Israel Program for Scientific Translations, Jerusalem, 1966, x, 261 pp.
[2] Beletskii V. V., Essays on the motion of celestial bodies, Birkhäuser, Basel, 2001, 372 pp.
[3] Beletskii V. V., “On satellite libration”, Artificial Earth satellite: Vol. 3, Akad. Nauk SSSR, Moscow, 1959, 13–31 (Russian)
[4] Beletsky V. V., Giverts M. E., “Motion of a pulsating system in a gravitational field”, Kosmicheskie Issledovaniya, 5:6 (1967), 304–308 (Russian)
[5] Burov A. A., “The motion of cross-shaped bodies around a fixed point in a central Newtonian force field”, J. Appl. Math. Mech., 60:1 (1996), 25–30
[6] Burov A. A., “Oscillations of a vibrating dumbbell on an elliptic orbit”, Dokl. Phys., 56:3 (2011), 182–189
[7] Burov A. A., Karapetyan A. V., “On the motion of cross-shaped bodies”, Mech. Solids, 30:6 (1995), 11–15
[8] Burov A. A., Kosenko I. I., “Planar vibrations of a solid with variable mass distribution in an elliptic orbit”, Dokl. Phys., 56:10 (2011), 548–552
[9] Vorobyov I. I., “The peculiar travel”, Kvant, 1974, no. 2, 22–25 (Russian)
[10] Donov A. E., “Theory of a gravicraft flight”, Kosmicheskie Issledovaniya, 9:3 (1971), 393–396 (Russian)
[11] Kozlov V. V., Onishchenko D. A., “The motion in a perfect fluid of a body containing a moving point mass”, J. Appl. Math. Mech., 67:4 (2003), 553–564
[12] Kozlov V. V., Ramodanov S. M., “The motion of a variable body in an ideal fluid”, J. Appl. Math. Mech., 65:4 (2001), 579–587
[13] Kozlov V. V., Ramodanov S. M., “On the motion of a body with a rigid hull and changing geometry of masses in an ideal fluid”, Dokl. Phys., 47:2 (2002), 132–135
[14] Kosenko I. I., “Application of the theory of the Leray – Schauder degree for the approximation of oscillations of a satellite on an elliptic orbit”, Dokl. Phys., 50:10 (2005), 532–534
[15] Kosenko I. I., “The topological degree and the approximation of solutions of irregular problems in mechanics: Oscillations of a satellite in an elliptic orbit”, J. Math. Sci. (N. Y.), 149:5 (2008), 1539–1566
[16] Malkin I. G., Some problems in the theory of nonlinear oscillations: In 2 vols., United States Atomic Energy Commission, Technical Information Service, Germantown, Md., 1959, 589 pp.
[17] Markeev A. P., Libration points in celestial mechanics and space dynamics, Nauka, Moscow, 1978 (Russian)
[18] Markeev A. P., Theoretical mechanics, R Dynamics, Institute of Computer Science, Izhevsk, 2007 (Russian)
[19] Markeev A. P., Linear Hamiltonian systems and some problems of stability of the satellite center of mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009 (Russian)
[20] Markov V. E., “Compensation of external perturbations applied to a spacecraft via the method of variation of its geometry of masses”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1974, no. 5, 3–9 (Russian)
[21] Moser J. K., Lectures on Hamiltonian systems, Mem. Amer. Math. Soc., 81, AMS, Providence, R.I., 1968, 60 pp.
[22] Sarychev V. A., Problems of orientation of satellites, Itogi Nauki Tekh. Ser. Issled. Kosmich. Prostr., VINITI, Moscow, 1978 (Russian)
[23] Chernous'ko F. L., “On the motion of a body containing a movable internal mass”, Dokl. Phys., 50:11 (2005), 593–597
[24] Chernous'ko F. L., “Analysis and optimization of the motion of a body controlled by means of a movable internal mass”, J. Appl. Math. Mech., 70:6 (2006), 819–842
[25] Chetaev N. G., Theoretical mechanics, Springer, Berlin, 1989, 407 pp.
[26] Amin R. A., Newton D. J., “Research into the effects of astronaut motion on the spacecraft: A review”, Acta Astronaut., 47:12 (2000), 859–869
[27] Bergamin L., Delva P., Hees A., “Vibrating systems in Schwarzschild spacetime: Towards new experiments in gravitation?”, Class. Quantum Grav., 26:18 (2009), 185006, 15 pp.
[28] Burov A. A., Chevallier D. P., “Dynamics of affinely deformable bodies from the standpoint of theoretical mechanics and differential geometry”, Rep. Math. Phys., 62:3 (2008), 283–321
[29] Burov A., Kosenko I., “On planar oscillations of a body with a variable mass distribution in an elliptic orbit”, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 225:10 (2011), 2288–2295
[30] Burov A., Kosenko I., “On planar oscillations of a body with a variable mass distribution in an elliptic orbit”, Proc. of the 7th European Nonlinear Dynamics Conference (ENOC'2011), eds. D. Bernardini, G. Rega, F. Romeo, Univ. di Roma, Sapienza, 2011
[31] Gratus J., Tucker R., “An improved method of gravicraft propulsion”, Acta Astronaut., 53:3 (2003), 161–172
[32] Iñarrea M., Lanchares V., “Chaos in the reorientation process of a dual-spin spacecraft with time-dependent moments of inertia”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:5 (2000), 997–1018
[33] Iñarrea M., Lanchares V., “Chaotic pitch motion of an asymmetric non-rigid spacecraft with viscous drag in circular orbit”, Internat. J. Non-Linear Mech., 41:1 (2006), 86–100
[34] Iñarrea M., Lanchares V., Rothos V. M., Salas J. P., “Chaotic rotations of an asymmetric body with time-dependent moments of inertia and viscous drag”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13:2 (2003), 393–409
[35] Landis G., “Reactionless orbital propulsion using tether deployment”, Acta Astronaut., 26:5 (1992), 307–312
[36] Levi-Civita T., “Sur la résolution qualitative du problème restreinte des trois corps”, Acta Math., 30:1 (1906), 305–327
[37] Longo M. J., “Swimming in Newtonian space-time: Orbital changes by cyclic changes in body shape”, Am. J. Phys., 72:10 (2004), 1312–1315
[38] Nechvile V., “Sur une forme nouvelle d'équations différentielles du problème restreint elliptique”, C. R. Acad. Sci. Paris, 182 (1926), 310–311
[39] Pascal M., “Sur le mouvement d'un triple bâtonnet dans un champ Newtonien”, J. Méc., 11:1 (1972), 147–160
[40] Schaefer J. F., “Artificial satellite orbit shifting without mass expulsion utilizing gravity gradient”, Proc. of the 17th Internat. Astronautical Congr. (Madrid, Spain, Oct 1966), 9 pp.
[41] Thomson W. T., Fung Y. C., “Instability of spinning space stations due to crew motion”, AIAA J., 3:6 (1965), 1082–1087
[42] Wisdom J., “Swimming in spacetime: Motion by cyclic changes in body shape”, Science, 299 (2003), 1865–1869