Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_4_a13, author = {A. V. Borisov and I. S. Mamaev}, title = {An inhomogeneous {Chaplygin} sleigh}, journal = {Russian journal of nonlinear dynamics}, pages = {625--639}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_4_a13/} }
A. V. Borisov; I. S. Mamaev. An inhomogeneous Chaplygin sleigh. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 625-639. http://geodesic.mathdoc.fr/item/ND_2017_13_4_a13/
[1] Bizyaev I. A., “The inertial motion of a roller racer”, Regul. Chaotic Dyn., 22:3 (2017), 239–247
[2] Borisov A. V., Kilin A. A., Mamaev I. S., “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116
[3] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin's sphere using rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272
[4] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859
[5] Borisov A. V., Kilin A. A., Mamaev I. S., “Dynamics and control of an omniwheel vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172
[6] Borisov A. V., Kilin A. A., Mamaev I. S., “On the Hadamard – Hamel problem and the dynamics of wheeled vehicles”, Regul. Chaotic Dyn., 20:6 (2015), 752–766
[7] Borisov A. V., Kuznetsov S. P., “Regular and chaotic motions of a Chaplygin sleigh under periodic pulsed torque impacts”, Regul. Chaotic Dyn., 21:7–8 (2016), 792–803
[8] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490
[9] Borisov A. V., Mamaev I. S., “The dynamics of a Chaplygin sleigh”, J. Appl. Math. Mech., 73:2 (2009), 156–161
[10] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 8:3 (2013), 277–328
[11] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The Jacobi integral in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400
[12] Carathéodory C., “Der Schlitten”, Z. Angew. Math. Mech., 13:2 (1933), 71–76
[13] García-Naranjo L. C., Maciejewski A. J., Marrero J. C., Przybylska M., “The inhomogeneous Suslov problem”, Phys. Lett. A, 378:32–33 (2014), 2389–2394
[14] Karavaev Yu. L., Kilin A. A., “Nonholonomic dynamics and control of a spherical robot with an internal omniwheel platform: Theory and experiments”, Proc. Steklov Inst. Math., 295 (2016), 158–167
[15] Rocard Y., L'instabilité en mécanique: Automobiles, avions, ponts suspendus, Masson, Paris, 1954, 239 pp.
[16] Fassó F., Sansonetto N., “Conservation of energy and momenta in nonholonomic systems with affine constraints”, Regul. Chaotic Dyn., 20:4 (2015), 449–462 {\color{red}}
[17] Fedorov Yu. N., García-Naranjo L. C., “The hydrodynamic Chaplygin sleigh”, J. Phys. A, 43:43 (2010), 434013, 18 pp.
[18] Kozlov V. V., “Dynamics of systems with nonintegrable constraints: 3”, Mosc. Univ. Mech. Bull., 38:3 (1983), 40–51 {\color{red}}
[19] Kozlov V. V., “Dynamics of systems with nonintegrable constraints: 1”, Mosc. Univ. Mech. Bull., 37:3–4 (1982), 27–34
[20] Kozlov V. V., “Dynamics of systems with nonintegrable constraints: 2”, Mosc. Univ. Mech. Bull., 37:3–4 (1982), 74–80
[21] Moshchuk N. K., “A qualitative analysis of the motion of a heavy solid of revolution on an absolutely rough plane”, J. Appl. Math. Mech., 52:2 (1988), 159–165
[22] Neimark Ju. I., Fufaev N. A., Dynamics of nonholonomic systems, Trans. Math. Monogr., 33, AMS, Providence, R.I., 1972, 518 pp.
[23] Levin M. A., Fufaev N. A., The theory of deformable wheel rolling, Nauka, Moscow, 1989, 272 pp. (Russian)
[24] Chaplygin S. A., “K teorii dvizheniya negolonomnykh sistem. Teorema o privodyaschem mnozhitele”, Matem. sb., 28:2 (1912), 303–314 ; Чаплыгин С. А., Собр. соч.: Т. 1 / С. А. Чаплыгин, ОГИЗ, Mосква – Ленинград, 1948; Chaplygin S. A., “On the theory of motion of nonholonomic systems. The reducing-multiplier theorem”, Regul. Chaotic Dyn., 13:4 (2008), 369–376