An inhomogeneous Chaplygin sleigh
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 625-639.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the dynamics of a system that is a generalization of the Chaplygin sleigh to the case of an inhomogeneous nonholonomic constraint. We perform an explicit integration and a sufficiently complete qualitative analysis of the dynamics.
Keywords: Chaplygin sleigh, inhomogeneous nonholonomic constraints, conservation laws, qualitative analysis, resonance.
@article{ND_2017_13_4_a13,
     author = {A. V. Borisov and I. S. Mamaev},
     title = {An inhomogeneous {Chaplygin} sleigh},
     journal = {Russian journal of nonlinear dynamics},
     pages = {625--639},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_4_a13/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - An inhomogeneous Chaplygin sleigh
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 625
EP  - 639
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_4_a13/
LA  - ru
ID  - ND_2017_13_4_a13
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%T An inhomogeneous Chaplygin sleigh
%J Russian journal of nonlinear dynamics
%D 2017
%P 625-639
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_4_a13/
%G ru
%F ND_2017_13_4_a13
A. V. Borisov; I. S. Mamaev. An inhomogeneous Chaplygin sleigh. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 625-639. http://geodesic.mathdoc.fr/item/ND_2017_13_4_a13/

[1] Bizyaev I. A., “The inertial motion of a roller racer”, Regul. Chaotic Dyn., 22:3 (2017), 239–247

[2] Borisov A. V., Kilin A. A., Mamaev I. S., “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116

[3] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin's sphere using rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272

[4] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859

[5] Borisov A. V., Kilin A. A., Mamaev I. S., “Dynamics and control of an omniwheel vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172

[6] Borisov A. V., Kilin A. A., Mamaev I. S., “On the Hadamard – Hamel problem and the dynamics of wheeled vehicles”, Regul. Chaotic Dyn., 20:6 (2015), 752–766

[7] Borisov A. V., Kuznetsov S. P., “Regular and chaotic motions of a Chaplygin sleigh under periodic pulsed torque impacts”, Regul. Chaotic Dyn., 21:7–8 (2016), 792–803

[8] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490

[9] Borisov A. V., Mamaev I. S., “The dynamics of a Chaplygin sleigh”, J. Appl. Math. Mech., 73:2 (2009), 156–161

[10] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 8:3 (2013), 277–328

[11] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The Jacobi integral in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400

[12] Carathéodory C., “Der Schlitten”, Z. Angew. Math. Mech., 13:2 (1933), 71–76

[13] García-Naranjo L. C., Maciejewski A. J., Marrero J. C., Przybylska M., “The inhomogeneous Suslov problem”, Phys. Lett. A, 378:32–33 (2014), 2389–2394

[14] Karavaev Yu. L., Kilin A. A., “Nonholonomic dynamics and control of a spherical robot with an internal omniwheel platform: Theory and experiments”, Proc. Steklov Inst. Math., 295 (2016), 158–167

[15] Rocard Y., L'instabilité en mécanique: Automobiles, avions, ponts suspendus, Masson, Paris, 1954, 239 pp.

[16] Fassó F., Sansonetto N., “Conservation of energy and momenta in nonholonomic systems with affine constraints”, Regul. Chaotic Dyn., 20:4 (2015), 449–462 {\color{red}}

[17] Fedorov Yu. N., García-Naranjo L. C., “The hydrodynamic Chaplygin sleigh”, J. Phys. A, 43:43 (2010), 434013, 18 pp.

[18] Kozlov V. V., “Dynamics of systems with nonintegrable constraints: 3”, Mosc. Univ. Mech. Bull., 38:3 (1983), 40–51 {\color{red}}

[19] Kozlov V. V., “Dynamics of systems with nonintegrable constraints: 1”, Mosc. Univ. Mech. Bull., 37:3–4 (1982), 27–34

[20] Kozlov V. V., “Dynamics of systems with nonintegrable constraints: 2”, Mosc. Univ. Mech. Bull., 37:3–4 (1982), 74–80

[21] Moshchuk N. K., “A qualitative analysis of the motion of a heavy solid of revolution on an absolutely rough plane”, J. Appl. Math. Mech., 52:2 (1988), 159–165

[22] Neimark Ju. I., Fufaev N. A., Dynamics of nonholonomic systems, Trans. Math. Monogr., 33, AMS, Providence, R.I., 1972, 518 pp.

[23] Levin M. A., Fufaev N. A., The theory of deformable wheel rolling, Nauka, Moscow, 1989, 272 pp. (Russian)

[24] Chaplygin S. A., “K teorii dvizheniya negolonomnykh sistem. Teorema o privodyaschem mnozhitele”, Matem. sb., 28:2 (1912), 303–314 ; Чаплыгин С. А., Собр. соч.: Т. 1 / С. А. Чаплыгин, ОГИЗ, Mосква – Ленинград, 1948; Chaplygin S. A., “On the theory of motion of nonholonomic systems. The reducing-multiplier theorem”, Regul. Chaotic Dyn., 13:4 (2008), 369–376