The Hess–Appelrot case and quantization of the rotation number
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 433-452

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the Hess case in the Euler–Poisson equations and with its generalization on the pencil of Poisson brackets. It is shown that in this case the problem reduces to investigating the vector field on a torus and that the graph showing the dependence of the rotation number on parameters has horizontal segments (limit cycles) only for integer values of the rotation number. In addition, an example of a Hamiltonian system is given which possesses an invariant submanifold (similar to the Hess case), but on which the dependence of the rotation number on parameters is a Cantor ladder.
Keywords: invariant submanifold, rotation number, Cantor ladder
Mots-clés : limit cycles.
@article{ND_2017_13_3_a9,
     author = {I. A. Bizyaev and A. V. Borisov and I. S. Mamaev},
     title = {The {Hess{\textendash}Appelrot} case and quantization of the rotation number},
     journal = {Russian journal of nonlinear dynamics},
     pages = {433--452},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_3_a9/}
}
TY  - JOUR
AU  - I. A. Bizyaev
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - The Hess–Appelrot case and quantization of the rotation number
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 433
EP  - 452
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_3_a9/
LA  - ru
ID  - ND_2017_13_3_a9
ER  - 
%0 Journal Article
%A I. A. Bizyaev
%A A. V. Borisov
%A I. S. Mamaev
%T The Hess–Appelrot case and quantization of the rotation number
%J Russian journal of nonlinear dynamics
%D 2017
%P 433-452
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_3_a9/
%G ru
%F ND_2017_13_3_a9
I. A. Bizyaev; A. V. Borisov; I. S. Mamaev. The Hess–Appelrot case and quantization of the rotation number. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 433-452. http://geodesic.mathdoc.fr/item/ND_2017_13_3_a9/