Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_3_a9, author = {I. A. Bizyaev and A. V. Borisov and I. S. Mamaev}, title = {The {Hess{\textendash}Appelrot} case and quantization of the rotation number}, journal = {Russian journal of nonlinear dynamics}, pages = {433--452}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_3_a9/} }
TY - JOUR AU - I. A. Bizyaev AU - A. V. Borisov AU - I. S. Mamaev TI - The Hess–Appelrot case and quantization of the rotation number JO - Russian journal of nonlinear dynamics PY - 2017 SP - 433 EP - 452 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_3_a9/ LA - ru ID - ND_2017_13_3_a9 ER -
I. A. Bizyaev; A. V. Borisov; I. S. Mamaev. The Hess–Appelrot case and quantization of the rotation number. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 433-452. http://geodesic.mathdoc.fr/item/ND_2017_13_3_a9/
[1] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Rolling of a ball without spinning on a plane: The absence of an invariant measure in a system with a complete set of integrals”, Regul. Chaotic Dyn., 17:6 (2012), 571–579 | DOI | MR | Zbl
[2] Bizyaev I. A., “Nonintegrability and obstructions to the Hamiltonianization of a nonholonomic Chaplygin top”, Dokl. Math., 90:2 (2014), 631–634 | DOI | DOI | MR | Zbl
[3] Borisov A. V., Mamaev I. S., “Symmetries and reduction in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604 | DOI | MR | Zbl
[4] Engelbrecht J. R., Mirollo R., “Structure of long-term average frequencies for Kuramoto oscillator systems”, Phys. Rev. Lett., 109:3 (2012), 034103, 5 pp. | DOI
[5] Lloyd N. G., “The number of periodic solutions of the equation $\dot{z}= z^N + p_1(t)z^{N-1} + ... + p_N(t)$”, Proc. London Math. Soc. (3), 27:4 (1973), 667–700 | DOI | MR | Zbl
[6] Lubowiecki P., Żoła̧dek H., “The Hess – Appelrot system: 1. Invariant torus and its normal hyperbolicity”, J. Geom. Mech., 4:4 (2012), 443–467 | MR | Zbl
[7] Arnol'd V. I., “Small denominators: 1. Mapping the circle onto itself”, Izv. Akad. Nauk SSSR Ser. Mat., 25:1 (1961), 21–86 (Russian) | MR
[8] Bizyaev I. A., Borisov A. V., Mamaev I. S., “The Hess – Appelrot system and its nonholonomic analogs”, Proc. Steklov Inst. Math., 294 (2016), 252–275 | DOI | MR | MR | Zbl
[9] Borisov A. V., Mamayev I. S., “The Hess case in rigid-body dynamics”, J. Appl. Math. Mech., 67:2 (2003), 227–235 | DOI | MR | Zbl
[10] Borisov A. V., Mamaev I. S., Dynamics of a rigid body: Hamiltonian methods, integrability, chaos, 2nd ed., R Dynamics, Institute of Computer Science, Izhevsk, 2005 (Russian) | MR
[11] Bukhshtaber V. M., Karpov O. V., Tertychnyi S. I., “The rotation number quantization effect”, Theoret. and Math. Phys., 162:2 (2010), 211–221 | DOI | DOI | MR
[12] Glutsyuk A. A., Kleptsyn V. A., Filimonov D. A., Schurov I. V., “On the adjacency quantization in an equation modeling the Josephson effect”, Funct. Anal. Appl., 48:4 (2014), 272–285 | DOI | DOI | MR | Zbl
[13] Ziglin S. L., “Splitting of separatrices, branching of solutions and nonexistence of an integral in the dynamics of a solid body”, Trans. Moscow Math. Soc., 1982, no. 1, 283–298 | MR | Zbl
[14] Il'yashenko Yu. S., Ryzhov D. A., Filimonov D. A., “Phase lock for equations describing a resistive model of a Josephson junction and their perturbations”, Funct. Anal. Appl., 45:3 (2011), 192–203 | DOI | DOI | MR | Zbl
[15] Kozlov V. V., “Splitting of the separatrices in the perturbed Euler – Poinsot problem”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 31:6 (1976), 99–104 (Russian) | Zbl
[16] Markeev A. P., Theoretical mechanics, R Dynamics, Institute of Computer Science, Izhevsk, 2007 (Russian)
[17] Nekrassov P. A., “Étude analytique d'un cas du mouvement d'un corps pesant autour d'un point fixe”, Mat. Sb., 18:2 (1896), 161–274 (Russian)
[18] Pliss V. A., Nonlocal problems of the theory of oscillations, Acad. Press, New York, 1966, 306 pp. | MR | MR | Zbl
[19] Zhukovsky N. E., “Hess' loxodromic pendulum”, Collected Works: Vol. 1, Gostekhizdat, Moscow, 1937, 332–348 (Russian)
[20] Chaplygin S. A., “Some cases of motion of a rigid body in a fluid: 1, 2”, Collected Works: Vol. 1, Gostekhizdat, Moscow, 1948, 136–311 (Russian)