Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_3_a7, author = {D. A. Maslov and I. V. Merkuryev}, title = {The linearization for wave solid-state gyroscope resonator oscillations and electrostatic control sensors forces}, journal = {Russian journal of nonlinear dynamics}, pages = {413--421}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_3_a7/} }
TY - JOUR AU - D. A. Maslov AU - I. V. Merkuryev TI - The linearization for wave solid-state gyroscope resonator oscillations and electrostatic control sensors forces JO - Russian journal of nonlinear dynamics PY - 2017 SP - 413 EP - 421 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_3_a7/ LA - ru ID - ND_2017_13_3_a7 ER -
%0 Journal Article %A D. A. Maslov %A I. V. Merkuryev %T The linearization for wave solid-state gyroscope resonator oscillations and electrostatic control sensors forces %J Russian journal of nonlinear dynamics %D 2017 %P 413-421 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2017_13_3_a7/ %G ru %F ND_2017_13_3_a7
D. A. Maslov; I. V. Merkuryev. The linearization for wave solid-state gyroscope resonator oscillations and electrostatic control sensors forces. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 413-421. http://geodesic.mathdoc.fr/item/ND_2017_13_3_a7/
[1] Peshekhonov V. G., “Gyroscopic navigation systems: Current status and prospects”, Gyroscopy and Navigation, 2:3 (2011), 111–118 | DOI
[2] Jeanroy A., Bouvet A., Remillieux G., “HRG and marine applications”, Gyroscopy and Navigation, 5:2 (2014), 67–74 | DOI
[3] Meyer D., Rozelle D., “Milli-HRG inertial navigation system”, Gyroscopy and Navigation, 3:4 (2012), 227–234 | DOI
[4] Basarab M. A., Lunin B. S., Matveev V. A., Fomichev A. V., Chumankin E. A., Yurin A. V., “Miniature gyroscope based on elastic waves in solids for small spacecraft”, Vestn. MGTU, Ser. Priborostroenie, 2014, no. 4, 80–96 (Russian)
[5] Zhuravlev V. F., Klimov D. M., Wave solid-state gyroscopes, Nauka, Moscow, 1985 (Russian)
[6] Zhuravlev V. Ph., “Theoretical foundations of wave solid gyroscope (WSG),”, Mech. Solids, 28:3 (1993), 3–15
[7] Egarmin N. E., “Nonlinear effects in dynamics of rotating circular ring”, Izv. Akad. Nauk. Mekh. Tverd. Tela, 1993, no. 3, 50–59 (Russian)
[8] Matveev V. A., Lipatnikov V. I., Alekhin A. V., Designing of a wave solid-state gyroscope, MGTU, Moscow, 1997, 168 pp. (Russian)
[9] Merkuryev I. V., Podalkov V. V., The dynamics of MEMS and wave solid-state gyroscopes, Fizmatlit, Moscow, 2009 (Russian)
[10] Maslov A. A., Maslov D. A., Merkuryev I. V., “Nonlinear effects in dynamics of cylindrical resonator of wave solid state gyro with electrostatic control system”, Gyroscopy and Navigation, 6:3 (2015), 224–229 | DOI | MR
[11] De S. K., Aluru N. R., “Complex nonlinear oscillations in electrostatically actuated microstructures”, J. Microelectromech. Syst., 15:2 (2006), 355–369 | DOI
[12] Rhoads J., Shaw S., Turner K., Moehlis J., DeMartini B., Zhang W., “Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators”, J. Sound Vibration, 296:4–5 (2006), 797–829 | DOI
[13] Sharma M., Sarraf E. H., Baskaran R., Cretu E., “Parametric resonance: Amplification and damping in MEMS gyroscopes”, Sens. Actuators A Phys., 177 (2012), 79–86 | DOI
[14] Zhuravlev V. Ph., “The controlled Foucault pendulum as a model of a class of free gyros”, Mech. Solids, 42:6 (1997), 21–28 | MR
[15] Maslov D. A., Merkuryev I. V., “Compensation of errors taking into account nonlinear oscillations of the vibrating ring microgyroscope operating in the angular velocity sensor mode”, Nelin. Dinam., 13:2 (2017), 227–241 (Russian)
[16] Maslov A. A., Maslov D. A., Merkuryev I. V., “Parameter identification of a hemispherical resonator gyro with nonlinearity of the resonator”, Pribory i sistemy. Upravlenie, kontrol, diagnostika, 2014, no. 5, 18–23 (Russian)
[17] Maslov D. A., “Parameters identification for the gyro with a cylindrical resonator allowing for nonlinearity impact on the forcing action amplitude”, Mashinostr. i inzh. obraz., 2017, no. 1, 24–31 (Russian)
[18] Tarasov A. N., Control system for micromechanical vibrating gyroscopes with combined excitation and measurements frequencies, Cand. Tech. Sci. Dissertation, Bauman Moscow State Technical University, Moscow, 2015, 190 pp.
[19] Zhuravlev V. Ph., Linch D. D., “Electric model of a hemispherical resonator gyro”, Mech. Solids, 30:5 (1995), 10–21