Phase synchronization of elements of autonomic control in mathematical model of cardiovascular system
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 381-397.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an original mathematical model for the human cardiovascular system. The model simulates the heart rate, autonomous control of heart, arterial pressure and cardiorespiratory interaction. Taking into account the self-excited autonomic control allowed us to reproduce the experimentally observed effects of phase synchronization between the control elements. The consistency of the proposed model is validated by quantitative and qualitative reproduction of spectral and statistical characteristics of real data from healthy subjects. Within physiological values of the parameters the model demonstrates chaotic dynamics and reproduces spontaneous interchange between the intervals of spontaneous and nonspontaneous behavior.
Keywords: mathematical model, synchronization, cardiovascular system, dynamic chaos, time delay system.
@article{ND_2017_13_3_a5,
     author = {J. M. Ishbulatov and A. S. Karavaev and V. I. Ponomarenko and A. R. Kiselev and S. A. Sergeev and Y. P. Seleznev and B. P. Bezruchko and M. D. Prokhorov},
     title = {Phase synchronization of elements of autonomic control in mathematical model of cardiovascular system},
     journal = {Russian journal of nonlinear dynamics},
     pages = {381--397},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_3_a5/}
}
TY  - JOUR
AU  - J. M. Ishbulatov
AU  - A. S. Karavaev
AU  - V. I. Ponomarenko
AU  - A. R. Kiselev
AU  - S. A. Sergeev
AU  - Y. P. Seleznev
AU  - B. P. Bezruchko
AU  - M. D. Prokhorov
TI  - Phase synchronization of elements of autonomic control in mathematical model of cardiovascular system
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 381
EP  - 397
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_3_a5/
LA  - ru
ID  - ND_2017_13_3_a5
ER  - 
%0 Journal Article
%A J. M. Ishbulatov
%A A. S. Karavaev
%A V. I. Ponomarenko
%A A. R. Kiselev
%A S. A. Sergeev
%A Y. P. Seleznev
%A B. P. Bezruchko
%A M. D. Prokhorov
%T Phase synchronization of elements of autonomic control in mathematical model of cardiovascular system
%J Russian journal of nonlinear dynamics
%D 2017
%P 381-397
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_3_a5/
%G ru
%F ND_2017_13_3_a5
J. M. Ishbulatov; A. S. Karavaev; V. I. Ponomarenko; A. R. Kiselev; S. A. Sergeev; Y. P. Seleznev; B. P. Bezruchko; M. D. Prokhorov. Phase synchronization of elements of autonomic control in mathematical model of cardiovascular system. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 381-397. http://geodesic.mathdoc.fr/item/ND_2017_13_3_a5/

[1] Bernardi L., Radaelli A., Solda P. L., Coats A. J., Reeder M., Calciati A., Garrard C. S., Sleight P., “Autonomic control of skin microvessels: Assessment by power spectrum of photoplethysmographic waves”, Clin. Sci. (Lond.), 90:5 (1996), 345-355 | DOI

[2] Bezerianos A., Bountis T., Papaioannou G., Polydoropoulos P., “Nonlinear time series analysis of electrocardiograms”, Chaos, 5:1 (1995), 95–101 | DOI

[3] Cavalcanti S., Belardinelli E., “Modeling of cardiovascular variability using a differential delay equation”, IEEE Trans. Biomed. Eng., 43:10 (1996), 982–989 | DOI

[4] Cohen M. A., Taylor J. A., “Short-term cardiovascular oscillations in man: Measuring and modelling the physiologies”, J. Physiol., 542:3 (2002), 669–683 | DOI

[5] Cooley R. L., Montano N., Cogliati C., van de Borne P., Richenbacher W., Oren R., Somers V. K., “Evidence for a central origin of the low-frequency oscillation in RR-interval variability”, Circulation, 98:6 (1998), 556–561 | DOI

[6] Glass L., McKey M. C., From clocks to chaos: The rhythms of life, Princeton Univ. Press, Princeton, 1988, 248 pp. | MR | Zbl

[7] Goldberger A. L., “Nonlinear dynamics for clinicians: Chaos theory, fractals, and complexity at the bedside”, Lancet, 347:9011 (1996), 1312–1314 | DOI

[8] Goldberger A. L., Rigney D. R., West B. J., “Chaos and fractals in human physiology”, Sci. Am., 262:2 (1990), 42–49 | DOI

[9] Julien C., “The enigma of Mayer waves: Facts and models”, Cardiovasc. Res., 70:1 (2006), 12–21 | DOI

[10] Karavaev A. S., Ishbulatov Y. M., Ponomarenko V. I., Prokhorov M. D., Gridnev V. I., Bezruchko B. P., Kiselev A. R., “Model of human cardiovascular system with a loop of autonomic regulation of the mean arterial pressure”, J. Am. Soc. Hypertens., 10:3 (2016), 235–243 | DOI

[11] Karavaev A. S., Prokhorov M. D., Ponomarenko V. I., Kiselev A. R., Gridnev V. I., Ruban E. I., Bezruchko B. P., Synchronization of low-frequency oscillations in the human cardiovascular system, 19:3 (2009), 033112, 7 pp.

[12] Kiselev A. R., Gridnev V. I., Prokhorov M. D., Karavaev A. S., Posnenkova O. M., Ponomarenko V. I., Bezruchko B. P., Shvartz V. A., “Evaluation of 5-year risk of cardiovascular events in patients after acute myocardial infarction using synchronization of 0.1-Hz rhythms in cardiovascular system”, Ann. Noninvasive Electrocardiol., 17:3 (2012), 204–213 | DOI

[13] Kiselev A. R., Gridnev V. I., Prokhorov M. D., Karavaev A. S., Posnenkova O. M., Ponomarenko V. I., Bezruchko B. P., “Selection of optimal dose of beta-blocker treatment in myocardial infarction patients based on changes in synchronization between 0.1 Hz oscillations in heart rate and peripheral microcirculation”, J. Cardiovasc. Med. (Hagerstown), 13:8 (2012), 491–498 | DOI

[14] Kotani K., Struzik Z. R., Takamasu K., Stanley H. E., Yamamoto Y., “Model for complex heart rate dynamics in health and disease”, Phys. Rev. E, 72:4 (2005), 041904, 8 pp. | DOI

[15] Ottensen J. T., “Modelling the dynamical baroreflex-feedback control”, Math. Comput. Model., 31:4–5 (2000), 167–173 | DOI

[16] Ponomarenko V. I., Prokhorov M. D., Karavaev A. S., Kiselev A. R., Gridnev V. I., Bezruchko B. P., “Synchronization of low-frequency oscillations in the cardiovascular system: Application to medical diagnostics and treatment”, Eur. Phys. J. Special Topics, 222:10 (2013), 2687–2696 | DOI

[17] Pool R., “Is it healthy to be chaotic?”, Science, 243:4891 (1989), 604–607 | DOI

[18] Poon C. S., Merrill C. K., “Decrease of cardiac chaos in congestive heart failure”, Nature, 389:6650 (1997), 492–495 | DOI

[19] Guild S. J., Austin P. C., Navakatikyan M., Ringwood J. V., Malpas S. C., “Dynamic relationship between sympathetic nerve activity and renal blood flow: a frequency domain approach”, Am. J. Physiol. Regul. Integr. Comp. Physiol., 281:1 (2001), R206–R212

[20] Schreiber T., Schmitz A., “Improved surrogate data for nonlinearity tests”, Phys. Rev. Lett., 77:4 (1996), 635–638 | DOI

[21] Seidel H., Herzel H., “Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex”, Phys. D, 115:1–2 (1998), 145–160 | DOI | Zbl

[22] “Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing Electrophysiology”, Circulation, 93:5 (1996), 1043–1065 | DOI

[23] “Translation of Otto Frank's paper «Die Grundform des Arteriellen Pulses»”, Z. Biol., 37 (1899), 483–526

[24] Ursino M., Magosso E., “Short-term autonomic control of cardiovascular function: A mini review with the help of mathematical models”, J. Integr. Neurosci., 2:2 (2003), 219–247 | DOI

[25] Warner H. R., “The frequency-dependent nature of blood pressure regulation by the carotid sinus studied with an electric analog”, Circ. Res., 6:1 (1958), 35–40 | DOI

[26] Wolf A., Swift J. B., Swinney H. L., Vastano J. A., “Determining Lyapunov exponents from a time series”, Phys. D, 16:3 (1985), 285–317 | DOI | MR | Zbl

[27] Bayevsky R. M., Ivanov G. G., Chireykin L. V., Gavrilushkin A. P., Dovgalevsky P. Ya., Kukushkin Yu. A., Mironova T. F., Priluzkiy D. A., Semenov A. V., Fedorov V. F., Fleishman A. N., Medvedev M. M., “HRV analysis under the usage of different electrocardiography systems (part 1)”, Vestn. aritmolog., 2002, no. 24, 65–87 (Russian)

[28] Bezruchko B. P., Gridnev V. I., Karavaev A. S., Kiselev A. R., Ponomarenko V. I., Prokhorov M. D., Ruban E. I., “Technique of investigation of synchronization between oscillatory processes with the frequency of 0.1 Hz in the human cardiovascular system”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 17:6 (2009), 44–56 (Russian)

[29] Bezruchko B. P., Smirnov D. A., Mathematical modeling and chaotic time-series, Kolledzh, Saratov, 2005 (Russian)

[30] Borovkova Ye. I., Karavaev A. S., Bezruchko B. P., Ponomarenko V. I., Prokhorov M. D., “Uncovering frequency locking for systems affected by chirping”, Bull. Russ. Acad. Sci.: Phys., 75:12 (2011), 1601–1604 | DOI

[31] Kiselev A. R., Posnenkova O. M., Gridnev V. I., Dovgalevskii P. Ya., Bespyatov A. B., Ponomarenko V. I., Prokhorov M. D., “Internal synchronization of the main 0.1-Hz rhythms in the autonomic control of the cardiovascular system”, Human Physiology, 33:2 (2007), 188–193 | DOI

[32] Krupatkin A. I., Sidorov V. V., Laser doppler flowmetry of blood microcirculation, Meditsina, Moscow, 2005 (Russian)

[33] Fleishman A. N., Slow hemodynamic oscillations: The theory, practical application in clinical medicine and prevention, Nauka, Novosibirsk, 1999 (Russian)