Dynamic modes of the Ricker model with periodic Malthusian parameter
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 363-380.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies dynamic modes of the Ricker model with the periodic Malthusian parameter. The equation parametric space is shown to have multistability areas in which different dynamic modes are possible depending on the initial conditions. In particular, the model trajectory can asymptotically tend either to a stable cycle or to a chaotic attractor. Oscillation synchronization of the 2-cycles and the Malthusian parameter of the model are studied. Fluctuations in population size and environmental factors can be either synchronous or asynchronous. The structural features of attraction basins in phase space are investigated for possible stable dynamic modes.
Keywords: recurrence equation, Ricker model, periodic Malthusian parameter, stability, phase space, basins of attraction, multistability.
Mots-clés : bifurcation, dynamic modes
@article{ND_2017_13_3_a4,
     author = {K. V. Shlufman and G. P. Neverova and E. Ya. Frisman},
     title = {Dynamic modes of the {Ricker} model with periodic {Malthusian} parameter},
     journal = {Russian journal of nonlinear dynamics},
     pages = {363--380},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_3_a4/}
}
TY  - JOUR
AU  - K. V. Shlufman
AU  - G. P. Neverova
AU  - E. Ya. Frisman
TI  - Dynamic modes of the Ricker model with periodic Malthusian parameter
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 363
EP  - 380
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_3_a4/
LA  - ru
ID  - ND_2017_13_3_a4
ER  - 
%0 Journal Article
%A K. V. Shlufman
%A G. P. Neverova
%A E. Ya. Frisman
%T Dynamic modes of the Ricker model with periodic Malthusian parameter
%J Russian journal of nonlinear dynamics
%D 2017
%P 363-380
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_3_a4/
%G ru
%F ND_2017_13_3_a4
K. V. Shlufman; G. P. Neverova; E. Ya. Frisman. Dynamic modes of the Ricker model with periodic Malthusian parameter. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 363-380. http://geodesic.mathdoc.fr/item/ND_2017_13_3_a4/

[1] Kaev A. M., “Temporal structure of migration flow in pink salmon Oncorhynchus gorbuscha in the sea of Okhotsk”, Izv. TINRO, 130:1–3 (2002), 904–920 (Russian)

[2] Ashikhmina E. V., Izrailsky Yu. G., Frisman E. Ya., “Dynamics of the Ricker model with periodical parameter variation”, Vestn. Dalnevost. Otd. RAN, 2004, no. 5, 19–28 (Russian)

[3] Sacker R. J., von Bremen H. F., “A conjecture on the stability of the periodic solutions of Ricker's equation with periodic parameters”, Appl. Math. Comput., 217:3 (2010), 1213–1219 | MR | Zbl

[4] Zhou Zh., Zou X., “Stable periodic solutions in a discrete logistic equation”, Appl. Math. Lett., 16:2 (2003), 165–171 | DOI | MR | Zbl

[5] Kon R., “Attenuant cycles of population models with periodic carrying capacity”, J. Difference Equ. Appl., 11:4–5 (2005), 423–430 | DOI | MR | Zbl

[6] Sacker R. J., “A note on periodic Ricker maps”, J. Difference Equ. Appl., 13:1 (2007), 89–92 | DOI | MR | Zbl

[7] Elaydi S. N., Luís R., Oliveira H., “Towards a theory of periodic difference equations and its application to population dynamics”, Dynamics, Games and Science, v. 1, Springer Proc. Math., 1, eds. M. M. Peixoto et al., Springer, Heidelberg, 2011, 287–321 | DOI | Zbl

[8] AlSharawi Z., Angelos J., Elaydi S., Rakesh L., “An extension of Sharkovsky's theorem to periodic difference equations”, J. Math. Anal. Appl., 316:1 (2006), 128–141 | DOI | MR | Zbl

[9] AlSharawi Z., Angelos J., Elaydi S., “Existence and stability of periodic orbits of periodic difference equations with delays”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:1 (2008), 203–217 | DOI | MR | Zbl

[10] Shlufman K. V., Neverova G. P., Frisman E. Ya., “Two-cycles of the Ricker model with the periodic Malthusian parameter: Stability and multistability”, Nelin. Dinam., 12:4 (2016), 553–565 (Russian) | MR

[11] Ricker W. E., Computation and interpretation of biological statistics of fish populations, Bulletin of the Fisheries Research Board of Canada, 191, Department of the Environment Fisheries and Marine Service, Ottawa, 1975, 400 pp.

[12] Skaletskaya E. I., Frisman E. Ya., Shapiro A. P., Discrete models of population dynamics and optimization of exploitation, Nauka, Moscow, 1979 (Russian)

[13] Chow Sh.-N., Li Ch., Wang D., Normal forms and bifurcation of planar vector fields, Cambridge Univ. Press, Cambridge, 1994, 484 pp. | MR | Zbl

[14] Kuznetsov S. P., Dynamical chaos, 2nd ed., Fizmatlit, Moscow, 2006 (Russian)

[15] Gallas J., “Dissecting shrimps: Results for some one-dimensional physical models”, Phys. A, 202:1–2 (1994), 196–223 | DOI

[16] Gomez F., Stoop R. L., Stoop R., “Universal dynamical properties preclude standard clustering in a large class of biochemical data”, Bioinformatics, 30:17 (2014), 2486–2493 | DOI