Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_3_a3, author = {M. V. Kornilov and I. V. Sysoev}, title = {Estimating the efficiency of the {Granger} causality method for detecting unidirectional coupling in the presence of common low frequency interference}, journal = {Russian journal of nonlinear dynamics}, pages = {349--362}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_3_a3/} }
TY - JOUR AU - M. V. Kornilov AU - I. V. Sysoev TI - Estimating the efficiency of the Granger causality method for detecting unidirectional coupling in the presence of common low frequency interference JO - Russian journal of nonlinear dynamics PY - 2017 SP - 349 EP - 362 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_3_a3/ LA - ru ID - ND_2017_13_3_a3 ER -
%0 Journal Article %A M. V. Kornilov %A I. V. Sysoev %T Estimating the efficiency of the Granger causality method for detecting unidirectional coupling in the presence of common low frequency interference %J Russian journal of nonlinear dynamics %D 2017 %P 349-362 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2017_13_3_a3/ %G ru %F ND_2017_13_3_a3
M. V. Kornilov; I. V. Sysoev. Estimating the efficiency of the Granger causality method for detecting unidirectional coupling in the presence of common low frequency interference. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 349-362. http://geodesic.mathdoc.fr/item/ND_2017_13_3_a3/
[1] Granger C. W. J., “Investigating causal relations by econometric models and cross-spectral methods”, Econometrica, 37:3 (1969), 424–438 | DOI | Zbl
[2] Schreiber T., “Measuring information transfer”, Phys. Rev. Lett., 85:2 (2000), 461–464 | DOI | MR
[3] Baccalá L. A., Sameshima K., “Partial directed coherence: A new concept in neural structure determination”, Biol. Cybern., 84:6 (2001), 463–474 | DOI | Zbl
[4] Smirnov D. A., Sidak E. V., Bezruchko B. P., “A method for revealing coupling between oscillators with analytical assessment of statistical significance”, Tech. Phys. Lett., 39:7 (2013), 601–605 | DOI
[5] Theiler J., Eubank S., Longtin A., Galdrikian B., Farmer J. D., “Testing for nonlinearity in time series: The method of surrogate data”, Phys. D, 58:1–4 (1992), 77–94 | DOI | Zbl
[6] Sysoev I. V., Karavaev A. S., Nakonechny P. I., “Role of model nonlinearity for granger causality based coupling estimation for pathological tremor”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 18:4 (2010), 81–88 (Russian)
[7] Chen Y., Rangarajan G., Feng J., Ding M., “Analyzing multiple nonlinear time series with extended Granger causality”, Phys. Lett. A, 324:1 (2004), 26–35 | DOI | MR | Zbl
[8] Bezruchko B. P., Ponomarenko V. I., Prokhorov M. D., Smirnov D. A., Tass P. A., “Modeling nonlinear oscillatory systems and diagnostics of coupling between them using chaotic time series analysis: applications in neurophysiology”, Physics-Uspekhi, 51:3 (2008), 304–310 | DOI | DOI
[9] Marinazzo D., Pellicoro M., Stramaglia S., “Nonlinear parametric model for Granger causality of time series”, Phys. Rev. E, 73:6 (2006), 066216, 6 pp. | DOI
[10] Marinazzo D., Pellicoro M., Stramaglia S., “Kernel method for nonlinear Granger causality”, Phys. Rev. Lett., 100:14 (2008), 144103, 4 pp. | DOI
[11] Hesse W., Möller E., Arnold M., Schack B., “The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies”, J. Neurosci. Methods, 124:1 (2003), 27–44 | DOI
[12] Sysoeva M., Sitnikova E., Sysoev I., Bezruchko B., van Luijtelaar G., “Application of adaptive nonlinear Granger causality: Disclosing network changes before and after absence seizure onset in a genetic rat model”, J. Neurosci. Methods, 226 (2014), 33–41 | DOI
[13] Chen Y., Bressler S. L., Ding M., “Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data”, J. Neurosci. Methods, 150:2 (2006), 228–237 | DOI | MR
[14] Kornilov M. V., Medvedeva T. M., Bezruchko B. P., Sysoev I. V., “Choosing the optimal model parameters for Granger causality in application to time series with main timescale”, Chaos Solitons Fractals, 82 (2016), 11–21 | DOI | Zbl
[15] Kornilov M. V., Sysoev I. V., Bezruchko B. P., “Optimal selection of parameters of the forecasting models used for the nonlinear Granger causality method in application to the signals with a main time scales”, Nelin. Dinam., 10:3 (2014), 279–295 (Russian)
[16] Kornilov M. V., Sysoev I. V., “Investigating nonlinear Granger causality method efficiency at strong synchronization of systems”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 22:4 (2014), 66–75 (Russian)
[17] Kornilov M. V., Sysoev I. V., “Influence of the choice of the model structure for working capacity of nonlinear Granger causality approach”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 21:2 (2013), 74–88 (Russian)
[18] Sysoeva M. V., Dikanev T. V., Sysoev I. V., “Selecting time scales for empirical model construction”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 20:2 (2012), 54–62 (Russian) | Zbl
[19] Yakhno Yu. V., Molkov Ya. I., Mukhin D. N., Loskutov E. M., Feigin A. M., “Reconstruction of an evolution operator as a technique of analysis of epileptiform electric brain activity”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 19:6 (2011), 156–172 (Russian) | Zbl
[20] Packard N. H., Crutchfield J. P., Farmer J. D., Shaw R. S., “Geometry from a time series”, Phys. Rev. Lett., 45:9 (1980), 712–716 | DOI | MR
[21] Kougioumtzis D., “State space reconstruction parameters in the analysis of chaotic time series: The role of the time window length”, Phys. D, 95:1 (1996), 13–28 | DOI
[22] Winterhalder M., Schelter B., Hesse W., Schwab K., Leistritz L., Klan D., Bauer R., Timmer J., Witte H., “Comparison of linear signal processing techniques to infer directed interactions in multivariate neural systems”, Signal Process., 85:11 (2005), 2137–2160 | DOI | Zbl
[23] Nalatore H., Ding M., Rangarajan G., “Mitigating the effects of measurement noise on Granger causality”, Phys. Rev. E, 75:3 (2007), 031123, 10 pp. | DOI
[24] Nalatore H., Sasikumar N., Rangarajan G., “Effect of measurement noise on Granger causality”, Phys. Rev. E, 90:6 (2014), 062127, 9 pp. | DOI
[25] Medvedeva T. M., Paramonov F. B., Sysoev I. V., “The effect of increase of the Granger causality method sensitivity with rise of a measurement noise”, Nelin. Dinam., 11:4 (2015), 657–670 (Russian) | Zbl
[26] Smirnov D. A., Sysoev I. V., Seleznev E. P., Bezruchko B. P., “Reconstructing nonautonomous system models with discrete spectrum of external action”, Tech. Phys. Lett., 29:10 (2003), 824–827 | DOI