Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_3_a2, author = {O. B. Isaeva and M. A. Obychev and D. V. Savin}, title = {Dynamics of a discrete system with the operator of evolution given by an implicit function: from the {Mandelbrot} map to a unitary map}, journal = {Russian journal of nonlinear dynamics}, pages = {331--348}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_3_a2/} }
TY - JOUR AU - O. B. Isaeva AU - M. A. Obychev AU - D. V. Savin TI - Dynamics of a discrete system with the operator of evolution given by an implicit function: from the Mandelbrot map to a unitary map JO - Russian journal of nonlinear dynamics PY - 2017 SP - 331 EP - 348 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_3_a2/ LA - ru ID - ND_2017_13_3_a2 ER -
%0 Journal Article %A O. B. Isaeva %A M. A. Obychev %A D. V. Savin %T Dynamics of a discrete system with the operator of evolution given by an implicit function: from the Mandelbrot map to a unitary map %J Russian journal of nonlinear dynamics %D 2017 %P 331-348 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2017_13_3_a2/ %G ru %F ND_2017_13_3_a2
O. B. Isaeva; M. A. Obychev; D. V. Savin. Dynamics of a discrete system with the operator of evolution given by an implicit function: from the Mandelbrot map to a unitary map. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 331-348. http://geodesic.mathdoc.fr/item/ND_2017_13_3_a2/
[1] Beck Ch., “Physical meaning for Mandelbrot and Julia sets”, Phys. D, 125:3–4 (1999), 171–182 | DOI | MR | Zbl
[2] Bohr T., Cvitanović P., Jensen M. H., “Fractal «aggregates» in the complex plane”, Europhys. Lett., 6:5 (1998), 445–450 | DOI
[3] Bullett Sh. R., Osbaldestin A. H., Percival I. C., “An iterated implicit complex map”, Phys. D, 19:2 (1986), 290–300 | DOI | MR | Zbl
[4] Bullett Sh., “Dynamics of quadratic correspondences”, Nonlinearity, 1:1 (1988), 27–50 | DOI | MR | Zbl
[5] Cayley A., “Desiderata and suggestions: No. 3. The Newton – Fourier imaginary problem”, Am. J. Math., 2:1 (1879), 97 | DOI | MR
[6] Chen C., Györgyi G., Schmidt G., “Universal transition between Hamiltonian and dissipative chaos”, Phys. Rev. A, 34:3 (1986), 2568–2570 | DOI | MR
[7] Cvitanović P., Myrheim, J., “Universality for period $n$-tuplings in complex mappings”, Phys. Lett. A, 94:8 (1983), 329–333 | DOI | MR
[8] DiFranco D. E., Cham T.-J., Regh J. M., “Reconstruction of $3$D figure motion from $2$D correspondences”, Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, v. 1, IEEE Computer Society Press, Los Alamitos, 2001, 307–314
[9] Éntin M. V., Éntin G. M., “Scale invariance in percolation theory and fractals”, JETP Lett., 64:6 (1996), 467–472 | DOI
[10] Fatou P., “Sur les équations fonctionnelles”, Bull. Soc. Math. France, 47 (1919), 161–271 ; Fatou P., “Sur les équations fonctionnelles”, Bull. Soc. Math. France, 48 (1920), 208–314 | DOI | MR | Zbl | DOI | MR
[11] Feigenbaum M. J., “Universal behavior in nonlinear systems”, Phys. D, 7:1–3 (1983), 16–39 | DOI | MR
[12] Feigenbaum M. J., Kadanoff L. P., Shenker S. J., “Quasiperiodicity in dissipative systems: A renormalization group analysis”, Phys. D, 5:2–3 (1982), 370–386 | DOI | MR
[13] Feudel U., Kuznetsov S., Pikovsky A., Strange nonchaotic attractors: Dynamics between order and chaos in quasiperiodically forced systems, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 56, World Sci., Hackensack, N.J., 2006, 228 pp. | MR
[14] Feudel U., “Complex dynamics in multistable systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:6 (2008), 1607–1626 | DOI | MR
[15] Gardini L., Hommes C., Tramontana F., de Vilder R., “Forward and backward dynamics in implicitly defined overlapping generations models”, J. Econ. Behav. Organ., 71:2 (2009), 110–129 | DOI
[16] Govin M., Jauslin H. R., Cibils M., “Julia sets in iterative KAM methods for eigenvalue problems”, Chaos Solitons Fractals, 9:11 (1998), 1835–1846 | DOI | MR | Zbl
[17] Gol'berg A. I., Sinai Ya. G., Khanin K. M., “Universal properties for sequences of bifurcations of period three”, Russian Math. Surveys, 38:1 (1983), 187–188 | DOI | MR | Zbl
[18] Hill D. L., “Control of implicit chaotic maps using nonlinear approximations”, Chaos, 10:3 (2000), 676–681 | DOI | MR | Zbl
[19] Isaeva O. B., Eliseev M. V., Rozhnev A. G., Ryskin N. M., “Simulation of field emission from fractal surface”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 7:5 (1999), 33–43 (Russian)
[20] Isaeva O. B., Kuznetsov S. P., “On scaling properties of two-dimensional maps near the accumulation point of the period-tripling cascade”, Regul. Chaotic Dyn., 5:4 (2000), 459–476 | DOI | MR | Zbl
[21] Isaeva O. B., Kuznetsov S. P., Ponomarenko V. I., “Mandelbrot set in coupled logistic maps and in an electronic experiment”, Phys. Rev. E., 64:5 (2001), 055201(R), 4 pp. | DOI
[22] Isaeva O. B., “On possibility of realization of the phenomena of complex analytical dynamics for the physical systems, built up of coupled elements, which demonstrate period-doublings”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 9:6 (2001), 129–146 (Russian) | Zbl
[23] Isaeva O. B., Kuznetsov S. P., Osbaldestin A. H., “A system of alternately excited coupled non-autonomous oscillators manifesting phenomena intrinsic to complex analytical maps”, Phys. D, 237:7 (2008), 873–884 | DOI | MR | Zbl
[24] Julia G., “Mémoire sur l'itération des fonctions rationnelles”, J. Math. Pure Appl. (8), 1 (1918), 47–246
[25] Kaneko K., Collapse of tori and genesis of chaos in dissipative systems, World Sci., Singapore, 1986, 264 pp. | MR | Zbl
[26] Kaneko K., Collapse of tori and genesis of chaos in dissipative systems, World Sci., Singapore, 1986, xii+264 pp. | MR | Zbl
[27] Kuznetsov S. P., Dynamical chaos and uniformly hyperbolic attractors: From mathematics to physics, R Dynamics, Institute of Computer Science, Izhevsk, 2013 (Russian)
[28] Lee T. D., Yang C. N., “Statistical theory of equations of state and phase transitions: 2. Lattice gas and Ising model”, Phys. Rev. (2), 87:3 (1952), 410–419 | DOI | MR | Zbl
[29] Mandelbrot B. B., The fractal geometry of nature, Freeman, San-Francisco, Calif., 1982, 460 pp. | MR | Zbl
[30] Mandelbrot B. B., Fractals and chaos: The Mandelbrot set and beyond, Springer, New York, 2004, XII+308 pp. | MR | MR | Zbl
[31] MacKay R. S., van Zeijts J. B. J., “Period doubling for bimodal maps: A horse-shoe for a renormalization operator”, Nonlinearity, 1:1 (1988), 253–277 | DOI | MR | Zbl
[32] Encyclopaedia of mathematics, v. 1 (A–B), ed. M. Hazewinkel, Kluwer, Dordrecht, 1987, xi + 488 pp. | MR
[33] Mestel B. D., Osbaldestin A. H., “Renormalisation in implicit complex maps”, Phys. D, 39:2–3 (1989), 149–162 | DOI | MR | Zbl
[34] Milnor J. W., Dynamics in one complex variable: Introductory lectures, Vieweg, Teubner, Wiesbaden, 2000, 251 pp. | Zbl
[35] Peitgen H.-O., Richter P. H., The beauty of fractals: Images of complex dynamical systems, Springer, Berlin, 1986, 202 pp. | MR | Zbl
[36] Peckham B. B., Montaldi J., “Real continuation from the complex quadratic family: Fixed-point bifurcation sets”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:2 (2000), 391–414 | DOI | MR | Zbl
[37] Pecora N., Tramontana F., “Maps with vanishing denominator and their applications”, Front. Appl. Math. Stat., 2 (2016), 11 | DOI
[38] Pikovsky A., Rosenblum M., Kurths J., Synchronization: A universal concept in nonlinear sciences, Cambridge Nonlinear Sci. Ser., 12, Cambridge Univ. Press, Cambridge, 2001, 432 pp. | MR | Zbl
[39] Pomeau Y., Manneville P., “Intermittent transition to turbulence in dissipative dynamical systems”, Comm. Math. Phys., 74:2 (1980), 189–197 | DOI | MR
[40] Prigogine I., Stengers I., The end of certainty, Free Press, New York, 1997, 240 pp.
[41] Reichl L. E., The transition to chaos in conservative classical systems: Quantum manifestations, Springer, New York, 1992, 551 pp. | MR | Zbl
[42] Roberts J. A. G., Quispel G. R. W., “Chaos and time-reversal symmetry: Order and chaos in reversible dynamical systems”, Phys. Rep., 216:2–3 (1992), 63–177 | DOI | MR
[43] Ruelle D., Takens F., “On the nature of turbulence”, Comm. Math. Phys., 20:3 (1971), 167–192 | DOI | MR | Zbl
[44] Sclaroff S., Pentland A., “Generalized implicit functions for computer graphics”, Comput. Graph., 25:4 (1991), 247–250 | DOI
[45] Schuster H. G., Just W., Deterministic chaos: An introduction, Wiley-VCH, Weinheim, 2005, 312 pp. | MR | Zbl
[46] Shudo A., Ishii Y., Ikeda K. S., “Julia set describes quantum tunnelling in the presence of chaos”, J. Phys. A, 35:17 (2002), L225–L231 | DOI | MR | Zbl
[47] Widom M., “Renormalization group analysis of quasiperiodicity in analytic maps”, Comm. Math. Phys., 92:1 (1983), 121–136 | DOI | MR | Zbl
[48] Vlasenko I. Yu., Internal maps: Topological invariants and their applications, Ukrainian Acad. Sci., Kiev, 2014, 214 pp.
[49] Yang C. N., Lee T. D., “Statistical theory of equations of state and phase transitions: 1. Theory of condensation”, Phys. Rev. (2), 87:3 (1952), 404–409 | DOI | MR | Zbl
[50] Zisook A. B., “Universal effects of dissipation in two-dimensional mappings”, Phys. Rev. A, 24:3 (1981), 1640–1642 | DOI | MR