Solitary states in a 2D lattice of bistable elements with global and close to global interaction
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 317-329

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the spatiotemporal dynamics of the 2D lattice of cubic maps with nonlocal coupling. Different types of chimera structures have been found. Also, the underexplored regime of solitary states has been found. It is shown that the solitary states are typical of a large coupling radius. The possibility of detecting such a regime increases with the transition to global interaction, while chimera states disappear.
Mots-clés : oscillator ensemble, nonlocal interaction, spatial structure
Keywords: 2D lattice, global coupling, chimera state, solitary state.
@article{ND_2017_13_3_a1,
     author = {I. A. Shepelev and T. E. Vadivasova},
     title = {Solitary states in a {2D} lattice of bistable elements with global and close to global interaction},
     journal = {Russian journal of nonlinear dynamics},
     pages = {317--329},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_3_a1/}
}
TY  - JOUR
AU  - I. A. Shepelev
AU  - T. E. Vadivasova
TI  - Solitary states in a 2D lattice of bistable elements with global and close to global interaction
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 317
EP  - 329
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_3_a1/
LA  - ru
ID  - ND_2017_13_3_a1
ER  - 
%0 Journal Article
%A I. A. Shepelev
%A T. E. Vadivasova
%T Solitary states in a 2D lattice of bistable elements with global and close to global interaction
%J Russian journal of nonlinear dynamics
%D 2017
%P 317-329
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_3_a1/
%G ru
%F ND_2017_13_3_a1
I. A. Shepelev; T. E. Vadivasova. Solitary states in a 2D lattice of bistable elements with global and close to global interaction. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 317-329. http://geodesic.mathdoc.fr/item/ND_2017_13_3_a1/