Compensation of errors taking into account nonlinear oscillations of the vibrating ring microgyroscope operating in the angular velocity sensor mode
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 227-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamics of a vibrating ring microgyroscope resonator with open-loop and closed feedback is investigated. We use a mathematical model of forced oscillations for thin elastic resonator, taking into account the nonlinearity coefficient, uneven stiffness, difference in Q-factors and control impact parameters. Using the Krylov–Bogolyubov averaging method, the resonator dynamics in slow variables measured by microgyroscope electronics has been investigated. Formulas with algorithmic compensation of the above defects for determining the angular velocity of the resonator under nonlinear oscillations and without feedback have been obtained. Control signals taking into account the defects are presented for feedback of the microgyroscope operating in the compensation mode of the angular velocity sensor. Numerical modeling of angular velocity determination in the operation modes considered has been carried out.
Keywords: vibrating ring microgyroscope, angular velocity sensor, nonlinear oscillations, drift compensation.
@article{ND_2017_13_2_a5,
     author = {D. A. Maslov and I. V. Merkuryev},
     title = {Compensation of errors taking into account nonlinear oscillations of the vibrating ring microgyroscope operating in the angular velocity sensor mode},
     journal = {Russian journal of nonlinear dynamics},
     pages = {227--241},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_2_a5/}
}
TY  - JOUR
AU  - D. A. Maslov
AU  - I. V. Merkuryev
TI  - Compensation of errors taking into account nonlinear oscillations of the vibrating ring microgyroscope operating in the angular velocity sensor mode
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 227
EP  - 241
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_2_a5/
LA  - ru
ID  - ND_2017_13_2_a5
ER  - 
%0 Journal Article
%A D. A. Maslov
%A I. V. Merkuryev
%T Compensation of errors taking into account nonlinear oscillations of the vibrating ring microgyroscope operating in the angular velocity sensor mode
%J Russian journal of nonlinear dynamics
%D 2017
%P 227-241
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_2_a5/
%G ru
%F ND_2017_13_2_a5
D. A. Maslov; I. V. Merkuryev. Compensation of errors taking into account nonlinear oscillations of the vibrating ring microgyroscope operating in the angular velocity sensor mode. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 227-241. http://geodesic.mathdoc.fr/item/ND_2017_13_2_a5/

[1] Peshekhonov V. G., “Gyroscopic navigation systems: Current status and prospects”, Gyroscopy and Navigation, 2:3 (2011), 111–118 | DOI

[2] Acar C., Shkel A., MEMS vibratory gyroscopes: Structural approaches to improve robustness, Springer, New York, 2009, 260 pp.

[3] Basarab M. A., Lunin B. S., Matveev V. A., Fomichev A. V., Chumankin E. A., Yurin A. V., “Miniature wave solid-state gyroscopes for small spacecraft”, Vestn. MGTU im. N. E. Baumana, Ser. Priborostroenie, 2014, no. 4, 80–96 (Russian)

[4] Xia D., Yu C., Kong L., “The development of micromachined gyroscope structure and circuitry technology”, Sensors, 14:1 (2014), 1394–1473 | DOI

[5] Ayazi F., Najafi K., “A HARPSS polysilicon vibrating ring gyroscope”, J. Microelectromech. Syst., 10:2 (2001), 169–179 | DOI

[6] Liu J., Chen D., Wang J., “Fabrication and test of an electromagnetic vibrating ring gyro based on SOI wafer”, J. Electron. (China), 31:2 (2014), 168–173 | DOI | MR

[7] Timoshenkov S. P., Anchutin S. A., Plekhanov V. E., Kochurina E. S., Timoshenkov A. S., Zuev E. V., “Development of mathematical descriptions of the micromechanical ring gyroscope”, Nano- i mikrosistem. tekh., 2014, no. 5, 18–25 (Russian)

[8] Grebennikov V. A., Minaev Ju. A., Aksenov K. S., Vibratory vacuum microgyroscope, Patent RF No 2518379 C1, 2014 (Russian)

[9] Redkin S. P., “Mathematical model of the temperature drift velocity of a solid-state wave gyroscope”, Aviakosmicheskoe Priborostroenie, 2014, no. 5, 9–13 (Russian)

[10] Severov L. A., Ponomarev V. K., Panferov A. I., Ovchinnikova N. A., “Structure and characteristics of a MEMS wave angular rate sensor with a ring resonator,”, Gyroscopy and navigation, 6:1 (2015), 45–53 | DOI

[11] Gavrilenko A. B., Merkuryev I. V., Podalkov V. V., Sbytova Ye. S., Dynamics of micromechanical systems, MEI, Moscow, 2016

[12] Zhuravlev V. F., Klimov D. M., Wave solid-state gyroscopes, Nauka, Moscow, 1985 (Russian)

[13] Merkuryev I. V., Podalkov V. V., The dynamics of MEMS and wave solid-state gyroscopes, Fizmatlit, Moscow, 2009 (Russian)

[14] Zhuravlev V. F., “The task of identification errors of the generalized Foucault pendulum”, Mech. Solids, 2000, no. 5, 5–9 | Zbl

[15] Maslov A. A., Maslov D. A., Merkuryev I. V., “Parameter identification of a hemispherical resonator gyro with nonlinearity of the resonator”, Pribory i sistemy. Upravlenie, kontrol, diagnostika, 2014, no. 5, 18–23 (Russian)

[16] Maslov A. A., Maslov D. A., Merkuryev I. V., The method for determining the parameters of a hemispherical resonator gyro, Patent RF No 2544308, 2015 (Russian)

[17] Maslov A. A., Maslov D. A., Merkuryev I. V., “Nonlinear effects in dynamics of cylindrical resonator of wave solid state gyro with electrostatic control system”, Gyroscopy and Navigation, 6:3 (2015), 224–229 | DOI | MR

[18] Bogolubov N. N., Mitropolskiy Yu. A., Asymptotic methods in the theory of nonlinear oscillations, Nauka, Moscow, 1974 (Russian) | MR