Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_2_a2, author = {M. V. Norkin}, title = {Cavitational braking of a rigid body in a perturbed liquid}, journal = {Russian journal of nonlinear dynamics}, pages = {181--193}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_2_a2/} }
M. V. Norkin. Cavitational braking of a rigid body in a perturbed liquid. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 181-193. http://geodesic.mathdoc.fr/item/ND_2017_13_2_a2/
[1] Sedov L. I., Two-dimensional problems in hydrodynamics and aerodynamics, Wiley, New York, 1965, 427 pp. | MR | MR | Zbl
[2] Norkin M., Korobkin A., “The motion of the free-surface separation point during the initial stage of horizontal impulsive displacement of a floating circular cylinder”, J. Eng. Math., 70:1 (2011), 239–254 | DOI | MR | Zbl
[3] Norkin M. V., “Initial stage of the circular cylindermotion in a fluid after an impact with the formation of a cavity”, Fluid Dyn., 47:3 (2012), 375–386 | DOI | MR | Zbl
[4] Norkin M. V., “Formation of a cavity under the inclined separation impact of a circular cylinder under the free surface of a heavy fluid”, Sib. Zh. Ind. Mat., 19:4 (2016), 81–92 (Russian) | Zbl
[5] Norkin M. B., “Formation of a cavity in the initial stage of motion of a circular cylinder in a fluid with a constant acceleration”, J. Appl. Mech. Tech. Phys., 53:4 (2012), 532–539 | DOI | MR | Zbl
[6] Korobkin A., “Cavitation in liquid impact problems”, Proc. of the 5th Intern. Symp. on Cavitation (Osaka, Japan, 1–4 Nov., 2003)
[7] Khabakhpasheva T. I., Korobkin A. A., “Oblique impact of a smooth body on a thin layer of inviscid liquid”, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 469:2151 (2013), 2012.0615, 14 pp. | DOI | MR
[8] Reinhard M., Korobkin A. A., Cooker M. J., “Cavity formation on the surface of a body entering water with deceleration”, J. Eng. Math., 96:1 (2016), 155–174 | DOI | MR | Zbl
[9] Tkacheva L. A., “Impact of a body with a plane bottom on a thin liquid layer at a small angle”, Fluid Dyn., 48:3 (2013), 352–365 | DOI | MR | Zbl
[10] Yudovich V. I., “Unique solvability of the problem of impact with separation of a rigid body on a nonhomogeneous fluid”, Vladikavkaz. Mat. Zh., 7:3 (2005), 79–91 (Russian) | MR
[11] Tyvand P. A., Miloh T., “Free-surface flow due to impulsive motion of a submerged circular cylinder”, J. Fluid Mech., 286 (1995), 67–101 | DOI | MR | Zbl
[12] Tyvand P. A., Miloh T., “Free-surface generated by a small submerged circular cylinder starting from rest”, J. Fluid Mech., 286 (1995), 103–116 | DOI | MR | Zbl
[13] Tyvand P. A., Landrini M., “Free-surface flow of a fluid body with an inner circular cylinder in impulsive motion”, J. Eng. Math., 40:2 (2001), 109–140 | DOI | MR | Zbl
[14] Makarenko N. I., Kostikov V. K., “Unsteady motion of an elliptic cylinder under a free surface”, J. Appl. Mech. Tech. Phys., 54:3 (2013), 367–376 | DOI | MR | Zbl
[15] Kostikov V. K., Makarenko N. I., “The motion of elliptic cylinder under free surface”, J. Phys. Conf. Ser., 722:1 (2016), 012021, 6 pp. | DOI
[16] Norkin M. V., “The effect of the walls of an arbitrary tank in the problem of separation–free impact on a floating body”, J. Appl. Mech. Tech. Phys., 42:1 (2001), 67–71 | DOI | MR | Zbl
[17] Norkin M. V., “Vertical impact on a rigid body floating on the surface of an ideal incompressible fluid in a bounded basin of arbitrary shape”, Fluid Dyn., 37:3 (2002), 455–462 | DOI | MR | Zbl
[18] Gorlov S. I., “Unsteady nonlinear problem of the horizontal motion of a contour under the interface between two liquids”, J. Appl. Mech. Tech. Phys., 40:3 (1999), 393–398 | DOI | MR | Zbl
[19] Dvorak A. V., Teselkin D. A., “Numerical solution of two-dimensional problems of the pulse motion of floating bodies”, Zh. Vychisl. Mat. Mat. Fiz., 26:1 (1986), 144–150