Limitationofthecontactangleintheproblemofadropofaliquidonavibrating substrate
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 165-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the process of fluctuations of a liquid droplet of a small volume lying on a vibrating hydrophobic rigid substrate. The study is carried out by the numerical simulation method of Euler fluid volume (Volume of Fluid — VoF). We study problems of accounting for dynamic changes in the contact angle at the triple point of the liquid-substrate-to-air as well as the impact of changes in the range of the contact angle on the processes that accompany the forced oscillations of the drop. Particular attention is paid to topological features formed in a drop of internal flows. The connection between the interaction of different surface effects, transformation of internal flows, the size limit changes in the contact angle of the substrate and the phase fluctuations are considered in detail. All numerical results are compared with experimental data.
Keywords: oscillations of a liquid droplet, free surface, volume of fluid method, internal flow, contact angle.
@article{ND_2017_13_2_a1,
     author = {A. A. Chernova},
     title = {Limitationofthecontactangleintheproblemofadropofaliquidonavibrating substrate},
     journal = {Russian journal of nonlinear dynamics},
     pages = {165--179},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_2_a1/}
}
TY  - JOUR
AU  - A. A. Chernova
TI  - Limitationofthecontactangleintheproblemofadropofaliquidonavibrating substrate
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 165
EP  - 179
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_2_a1/
LA  - ru
ID  - ND_2017_13_2_a1
ER  - 
%0 Journal Article
%A A. A. Chernova
%T Limitationofthecontactangleintheproblemofadropofaliquidonavibrating substrate
%J Russian journal of nonlinear dynamics
%D 2017
%P 165-179
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_2_a1/
%G ru
%F ND_2017_13_2_a1
A. A. Chernova. Limitationofthecontactangleintheproblemofadropofaliquidonavibrating substrate. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 165-179. http://geodesic.mathdoc.fr/item/ND_2017_13_2_a1/

[1] Nikolopoulos N. A., Theodorakakos A., Bergeles G., “Normal impingement of a droplet onto a wall film: A numerical investigation”, Int. J. Heat Fluid Flow, 26:1 (2005), 119–132 | DOI

[2] Fedorchenko A. I., Wang A.-B., Wang Y.-H., “Effect of capillary and viscous forces on spreading of a liquid drop impinging on a solid surface”, Phys. Fluids, 17:9 (2005), 093104, 8 pp. | DOI | Zbl

[3] Okumura K., Chevy F., Richard D., Quéré D., Clanet C., “Water spring: A model for bouncing drops”, Europhys. Lett., 62:2 (2003), 237—243 | DOI

[4] Kalinichenko V. A., Nesterov S. V., So A. N., “Faraday waves in a rectangular reservoir with local bottom irregularities”, Fluid Dynam., 50:4 (2015), 535–542 | DOI | MR | Zbl

[5] Ehrhorn J., Semke W., “Numerical modeling of vibration induced atomization of liquids”, Topics in Model Validation and Uncertainty Quantification, Conference Proceedings of the Society for Experimental Mechanics Series, 5, eds. T. Simmermacher, S. Cogan, B. Moaveni, C. Papadimitriou, Springer, New York, 2013, 243–253 | DOI

[6] Noblin X., Buguin A., Brochard-Wyart F., “Vibrated sessile drops: Transition between pinned and mobile contact line oscillations”, Eur. Phys. J. E, 14:4 (2004), 395–404 | DOI

[7] Shin Y.-S., Lim H.-Ch., “Shape oscillation and detachment conditions for a droplet on a vibrating flat surface”, Eur. Phys. J. E, 37:8 (2014), 74, 5 pp. | DOI

[8] Kim H., Lim H.-Ch., “Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface”, J. Phys. Chem. B, 119:22 (2015), 6740–6746 | DOI

[9] Park Ch.-S., Kim H., Lim H.-Ch., “Study of internal flow and evaporation characteristics inside a water droplet on a vertically vibrating hydrophobic surface”, Exp. Therm. Fluid Sci., 78 (2016), 112–123 | DOI

[10] James A. J., Vukasinovic B., Smith M. K., Glezer A., “Vibration-induced drop atomization and bursting”, J. Fluid Mech., 476 (2003), 1–28 | Zbl

[11] Vukasinovic B., Smith M. K., Glezer A., “Dynamics of a sessile drop in forced vibration”, J. Fluid Mech., 587 (2007), 395–423 | DOI | Zbl

[12] Kim H.-Y., “Drop fall-off from the vibrating ceiling”, Phys. Fluids, 16:2 (2004), 474–477 | DOI

[13] Kanchukoev V. Z., “Determination of the liquid drop profile on a solid surface”, Tech. Phys. Lett., 30:1 (2004), 45–47 | DOI

[14] Zaslavskiy Yu. M., “On eigenfrequency of non-axisymmetric oscillations of a liquid drop on a substrate”, Vestn. Nighegorodsk. Univ., 2014, no. 4(1), 62–65 (Russian)

[15] Lyubimov D. V., Lyubimova T. P., Shklyaev S. V., “Non-axisymmetric oscillations of a hemispherical drop”, Fluid Dynam., 39:6 (2004), 851–862 | DOI | MR | Zbl

[16] Lebedev-Stepanov P. V., Karabut T. A., Chernyshov N. A., Rybak S. A., “Investigation of the shape and stability of a liquid drop on a rotating substrate”, Acoust. Phys., 57:3 (2011), 320–325 | DOI

[17] Ivantsov A. O., “Acoustic oscillations of semispherical drop”, Vestn. PGNIU, 2012, no. 3, 16–23 (Russian)

[18] Lyubimov D. V., Lyubimova T. P., Shklyaev S. V., “Behavior of a drop on an oscillating solid plate”, Phys. Fluids, 18:1 (2006), 012101, 11 pp. | DOI | MR | Zbl

[19] Hocking L. M., “The damping of capillary-gravity waves at a rigid boundary”, J. Fluid Mech., 179 (1987), 253–266 | DOI | MR | Zbl

[20] Li Y., Umemura A., “Two-dimensional numerical investigation on the dynamics of ligament formation by Faraday instability”, Int. J. Multiph. Flow, 60 (2014), 64–75 | DOI | MR

[21] Foote G. B., “A numerical method for studying liquid drop behavior: Simple oscillation”, J. Comput. Phys., 11:4 (1973), 507–530 | DOI | Zbl

[22] Wilkes E. D., Basaran O. A., “Drop ejection from an oscillating rod”, J. Colloid Interface Sci., 242:1 (2001), 180–201 | DOI

[23] James A. J., Smith M. K., Glezer A., “Vibration-induced drop atomization and the numerical simulation of low-frequency single-droplet ejection”, J. Fluid Mech., 476 (2003), 29–62 | Zbl

[24] Korenchenko A. E., Ilimbaeva A. Zh., Beskachko V. P., “Numerical study of free vibrations of a sessile drop”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2011, no. 4, 72–76 (Russian)

[25] Schlichting H., Gersten K., Krause E., Oertel H. Jr., Grenzschicht-Theorie, 10th ed., Springer, Berlin, 2006, 799 pp. | MR

[26] Hirt C. W., Nichols B. D., “Volume of fluid (VoF) method for the dynamics of free boundaries”, J. Comput. Phys., 39:1 (1981), 201–225 | DOI | Zbl

[27] Chernova A. A., Kopysov S. P., Tonkov L. E., “Simulation of a liquid drop on a vibrating hydrophobic surface”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016), 012026, 7 pp. | DOI

[28] Jiang T.-Sh., Soo-Gun O. H., Slattery J. C., “Correlation for dynamic contact angle”, J. Colloid Interface Sci., 69:1 (1979), 74–77 | DOI

[29] Mourik S., Numerical modelling of the dynamic contact angle, Masters thesis, Univ. of Groningen, Groningen, 2002, 97 pp.

[30] Li X., He G., Zhang X., “Numerical simulation of drop oscillation in AC electrowetting”, China Phys. Mech. Astron., 56:2 (2013), 383–394 | DOI

[31] Issa R. I., “Solution of implicitly discretised fluid flow equations by operator-splitting”, J. Comput. Phys., 62:1 (1986), 40–65 | DOI | MR | Zbl

[32] Toro E. F., Riemann solvers and numerical methods for fluid dynamics: A practical introduction, 3rd ed., Springer, Berlin, 2009, 724 pp. | MR | Zbl

[33] Van Leer B., “Towards the ultimate conservative difference scheme: 3. Upstream-centered finite-difference schemes for ideal compressible flow”, J. Comput. Phys., 23:3 (1977), 263–275 | DOI | MR | Zbl

[34] Kuzmin I. M., Sarmakeeva A. S., Chernova A. A., “Simulation of oscilations liquid droplet lying on a vibrating undeformable base”, CPM, 18:4 (2016), 515–523 (Russian)