Bifurcational mechanism of formation of developed multistability in a van der Pol oscillator with time-delayed feedback
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 151-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mechanism of formation of multistability in a van der Pol generator with time-delayed feedback is studied. It is found that the developed multistability is formed through a sequence of two types of bifurcations: supercritical Andronov–Hopf bifurcation and subcritical Neimark–Sacker bifurcation. With variation of the control parameters, the fixed point repeatedly undergoes supercritical Andronov–Hopf bifurcation, which leads to an increase in the number of saddle cycles. The limit cycles acquire stability after a number of subcritical Neimark– Sacker bifurcations. The dynamics of the system is studied in a wide range of control parameters values.
Keywords: Time delay, multistability.
Mots-clés : bifurcations
@article{ND_2017_13_2_a0,
     author = {B. I. Maksim and N. M. Ryskin},
     title = {Bifurcational mechanism of formation of developed multistability in a van der {Pol} oscillator with time-delayed feedback},
     journal = {Russian journal of nonlinear dynamics},
     pages = {151--164},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_2_a0/}
}
TY  - JOUR
AU  - B. I. Maksim
AU  - N. M. Ryskin
TI  - Bifurcational mechanism of formation of developed multistability in a van der Pol oscillator with time-delayed feedback
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 151
EP  - 164
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_2_a0/
LA  - ru
ID  - ND_2017_13_2_a0
ER  - 
%0 Journal Article
%A B. I. Maksim
%A N. M. Ryskin
%T Bifurcational mechanism of formation of developed multistability in a van der Pol oscillator with time-delayed feedback
%J Russian journal of nonlinear dynamics
%D 2017
%P 151-164
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_2_a0/
%G ru
%F ND_2017_13_2_a0
B. I. Maksim; N. M. Ryskin. Bifurcational mechanism of formation of developed multistability in a van der Pol oscillator with time-delayed feedback. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 151-164. http://geodesic.mathdoc.fr/item/ND_2017_13_2_a0/

[1] Neimark Ju. I., Landa P. S., Stochastic and chaotic oscillations, Springer, Dordrecht, 1992 | MR | MR

[2] Ryskin N. M., Titov V. N., Han S. T., So J. K., Jang K. H., Kang Y. B., Park G. S., “Nonstationary behavior in a delayed feedback traveling wave tube folded waveguide oscillator”, Phys. Plasmas, 11:3 (2004), 1194–1202 | DOI

[3] Titov V. N., Volkov D. V., Yakovlev A. V., Ryskin N. M., “Reflex klystron as an example of a self-oscillating delayed feedback system”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 18:6 (2010), 138–158 (Russian) | Zbl

[4] Emelyanov V. V., Girevoy R. A., Yakovlev A. V., Ryskin N. M., “Time-domain particle-in-cell modeling of delayed feedback klystron oscillators”, IEEE Trans. on Electron Devices, 61:6 (2014), 1842–1847 | DOI

[5] Grigor'eva E. V., Kashchenko S. A., Loiko N. A., Samson A. M., “Multistability and chaos in a negative-feedback laser”, Sov. J. Quantum Electron., 20:8 (1990), 938–943 | DOI

[6] Grigorieva E. V., Kashchenko S. A., Loiko N. A., Samson A. M., “Nonlinear dynamics in a laser with a negative delayed feedback”, Phys. D, 59:4 (1992), 297–319 | DOI | MR | Zbl

[7] Grigorieva E. V., Kashchenko S. A., “Regular and chaotic pulsations in laser diode with delayed feedback”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 3:6 (1993), 1515–1528 | DOI | Zbl

[8] Grigorieva E. V., Kashchenko I. S., Kashchenko S. A., “Multistability in a laser model with large delay”, Model. Anal. Inform. Sist., 17:2 (2010), 17–27 (Russian)

[9] Mackey M. C., Glass L., “Oscillations and chaos in physiological control systems”, Science, 197 (1977), 287–289 | DOI

[10] Riznichenko G. Yu., The mathematical models in biophysics and ecology, R Dynamics, Institute of Computer Science, Izhevsk, 2003 (Russian) | MR

[11] Rubanik V. P., Oscillations of quasilinear time-delay systems, Nauka, Moscow, 1969 (Russian) | MR

[12] Baranov S. V., Kuznetsov S. P., Ponomarenko V. I., “Chaos in the phase dynamics of Q-switched van der Pol oscillator with additional delayed feedback loop”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 18:1 (2010), 11–23 (Russian) | MR | Zbl

[13] Song Y., “Hopf bifurcation and spatio-temporal patterns in delay-coupled van der Pol oscillators”, Nonlinear Dynam., 63:1–2 (2011), 223–237 | DOI | MR | Zbl

[14] Erneux Th., Grasman J., “Limit-cycle oscillators subject to a delayed feedback”, Phys. Rev. E (3), 78:2 (2008), 026209, 8 pp. | DOI | MR

[15] Gaudreault M., Drolet F., Viñals J., “Bifurcation threshold of the delayed van der Pol oscillator under stochastic modulation”, Phys. Rev. E, 85:5 (2012), 056214, 7 pp. | DOI

[16] Sah S., Belhaq M., “Effect of vertical high-frequency parametric excitation on self-excited motion in a delayed van der Pol oscillator”, Chaos Solitons Fractals, 37:5 (2006), 1489–1496 | DOI

[17] Janson N. B., Balanov A. G., Schöll E., “Delayed feedback as a means of control of noise-induced motion”, Phys. Rev. Lett., 93:1 (2004), 010601, 4 pp. | DOI

[18] Maccari A., “The response of a parametrically excited van der Pol oscillator to a time delay state feedback”, Nonlinear Dynam., 26:2 (2001), 105–119 | DOI | MR | Zbl

[19] Engelborghs K., Luzyanina T., Roose D., “Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL”, ACM Trans. Math. Software, 28:1 (2002), 1–21 | DOI | MR | Zbl

[20] Gorelik G. S., “To the theory of lagging feedback”, Zh. Tekh. Fiz., 9:5 (1939), 450–454 (Russian)

[21] Neimark Ju. I., “$D$-subdivision and spaces of quasi-polynomials”, Prikl. Mat. Mekh., 13:4 (1949), 349–380 (Russian)

[22] Kats V. A., “Appearance of chaos and its evolution in a distributed oscillator with delay (experiment)”, Radiophys. Quantum El., 28:2 (1985), 107–119 | DOI | MR

[23] Kats V. A., Kuznetsov S. P., “Transition to multimode chaos in a simple model of an oscillator with delay”, Sov. Tech. Phys. Lett., 13 (1987), 302–307

[24] Ryskin N. M., Shigaev A. M., “Complex dynamics of a simple distributed self-oscillatory model system with delay”, Tech. Phys., 47:7 (2002), 795–802 | DOI

[25] Farmer J. D., “Chaotic attractors of an infinite-dimensional dynamical system”, Phys. D, 4:3 (1981/82), 366–393 | DOI | MR

[26] Balyakin A. A., Ryskin N. M., “Peculiarities of calculation of the Lyapunov exponents set in distributed self-oscillated systems with delayed feedback”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 15:6 (2007), 3–21 (Russian) | Zbl

[27] Kashchenko I. S., “Local dynamics of equations with large delay”, Comput. Math. Math. Phys., 48:12 (2008), 2172–2181 | DOI | MR

[28] Glazkov D. V., Kashchenko S. A., “Local dynamics of DDE with large delay in the vicinity of the self-similar cycle”, Model. Anal. Inform. Sist., 17:3 (2010), 38–47 (Russian)