Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_2_a0, author = {B. I. Maksim and N. M. Ryskin}, title = {Bifurcational mechanism of formation of developed multistability in a van der {Pol} oscillator with time-delayed feedback}, journal = {Russian journal of nonlinear dynamics}, pages = {151--164}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_2_a0/} }
TY - JOUR AU - B. I. Maksim AU - N. M. Ryskin TI - Bifurcational mechanism of formation of developed multistability in a van der Pol oscillator with time-delayed feedback JO - Russian journal of nonlinear dynamics PY - 2017 SP - 151 EP - 164 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_2_a0/ LA - ru ID - ND_2017_13_2_a0 ER -
%0 Journal Article %A B. I. Maksim %A N. M. Ryskin %T Bifurcational mechanism of formation of developed multistability in a van der Pol oscillator with time-delayed feedback %J Russian journal of nonlinear dynamics %D 2017 %P 151-164 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2017_13_2_a0/ %G ru %F ND_2017_13_2_a0
B. I. Maksim; N. M. Ryskin. Bifurcational mechanism of formation of developed multistability in a van der Pol oscillator with time-delayed feedback. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 151-164. http://geodesic.mathdoc.fr/item/ND_2017_13_2_a0/
[1] Neimark Ju. I., Landa P. S., Stochastic and chaotic oscillations, Springer, Dordrecht, 1992 | MR | MR
[2] Ryskin N. M., Titov V. N., Han S. T., So J. K., Jang K. H., Kang Y. B., Park G. S., “Nonstationary behavior in a delayed feedback traveling wave tube folded waveguide oscillator”, Phys. Plasmas, 11:3 (2004), 1194–1202 | DOI
[3] Titov V. N., Volkov D. V., Yakovlev A. V., Ryskin N. M., “Reflex klystron as an example of a self-oscillating delayed feedback system”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 18:6 (2010), 138–158 (Russian) | Zbl
[4] Emelyanov V. V., Girevoy R. A., Yakovlev A. V., Ryskin N. M., “Time-domain particle-in-cell modeling of delayed feedback klystron oscillators”, IEEE Trans. on Electron Devices, 61:6 (2014), 1842–1847 | DOI
[5] Grigor'eva E. V., Kashchenko S. A., Loiko N. A., Samson A. M., “Multistability and chaos in a negative-feedback laser”, Sov. J. Quantum Electron., 20:8 (1990), 938–943 | DOI
[6] Grigorieva E. V., Kashchenko S. A., Loiko N. A., Samson A. M., “Nonlinear dynamics in a laser with a negative delayed feedback”, Phys. D, 59:4 (1992), 297–319 | DOI | MR | Zbl
[7] Grigorieva E. V., Kashchenko S. A., “Regular and chaotic pulsations in laser diode with delayed feedback”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 3:6 (1993), 1515–1528 | DOI | Zbl
[8] Grigorieva E. V., Kashchenko I. S., Kashchenko S. A., “Multistability in a laser model with large delay”, Model. Anal. Inform. Sist., 17:2 (2010), 17–27 (Russian)
[9] Mackey M. C., Glass L., “Oscillations and chaos in physiological control systems”, Science, 197 (1977), 287–289 | DOI
[10] Riznichenko G. Yu., The mathematical models in biophysics and ecology, R Dynamics, Institute of Computer Science, Izhevsk, 2003 (Russian) | MR
[11] Rubanik V. P., Oscillations of quasilinear time-delay systems, Nauka, Moscow, 1969 (Russian) | MR
[12] Baranov S. V., Kuznetsov S. P., Ponomarenko V. I., “Chaos in the phase dynamics of Q-switched van der Pol oscillator with additional delayed feedback loop”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 18:1 (2010), 11–23 (Russian) | MR | Zbl
[13] Song Y., “Hopf bifurcation and spatio-temporal patterns in delay-coupled van der Pol oscillators”, Nonlinear Dynam., 63:1–2 (2011), 223–237 | DOI | MR | Zbl
[14] Erneux Th., Grasman J., “Limit-cycle oscillators subject to a delayed feedback”, Phys. Rev. E (3), 78:2 (2008), 026209, 8 pp. | DOI | MR
[15] Gaudreault M., Drolet F., Viñals J., “Bifurcation threshold of the delayed van der Pol oscillator under stochastic modulation”, Phys. Rev. E, 85:5 (2012), 056214, 7 pp. | DOI
[16] Sah S., Belhaq M., “Effect of vertical high-frequency parametric excitation on self-excited motion in a delayed van der Pol oscillator”, Chaos Solitons Fractals, 37:5 (2006), 1489–1496 | DOI
[17] Janson N. B., Balanov A. G., Schöll E., “Delayed feedback as a means of control of noise-induced motion”, Phys. Rev. Lett., 93:1 (2004), 010601, 4 pp. | DOI
[18] Maccari A., “The response of a parametrically excited van der Pol oscillator to a time delay state feedback”, Nonlinear Dynam., 26:2 (2001), 105–119 | DOI | MR | Zbl
[19] Engelborghs K., Luzyanina T., Roose D., “Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL”, ACM Trans. Math. Software, 28:1 (2002), 1–21 | DOI | MR | Zbl
[20] Gorelik G. S., “To the theory of lagging feedback”, Zh. Tekh. Fiz., 9:5 (1939), 450–454 (Russian)
[21] Neimark Ju. I., “$D$-subdivision and spaces of quasi-polynomials”, Prikl. Mat. Mekh., 13:4 (1949), 349–380 (Russian)
[22] Kats V. A., “Appearance of chaos and its evolution in a distributed oscillator with delay (experiment)”, Radiophys. Quantum El., 28:2 (1985), 107–119 | DOI | MR
[23] Kats V. A., Kuznetsov S. P., “Transition to multimode chaos in a simple model of an oscillator with delay”, Sov. Tech. Phys. Lett., 13 (1987), 302–307
[24] Ryskin N. M., Shigaev A. M., “Complex dynamics of a simple distributed self-oscillatory model system with delay”, Tech. Phys., 47:7 (2002), 795–802 | DOI
[25] Farmer J. D., “Chaotic attractors of an infinite-dimensional dynamical system”, Phys. D, 4:3 (1981/82), 366–393 | DOI | MR
[26] Balyakin A. A., Ryskin N. M., “Peculiarities of calculation of the Lyapunov exponents set in distributed self-oscillated systems with delayed feedback”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 15:6 (2007), 3–21 (Russian) | Zbl
[27] Kashchenko I. S., “Local dynamics of equations with large delay”, Comput. Math. Math. Phys., 48:12 (2008), 2172–2181 | DOI | MR
[28] Glazkov D. V., Kashchenko S. A., “Local dynamics of DDE with large delay in the vicinity of the self-similar cycle”, Model. Anal. Inform. Sist., 17:3 (2010), 38–47 (Russian)