On an integrable system on a plane with an integral of motion of sixth order in momenta
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 117-127

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the Jacobi method we obtain a new integrable system on the plane with a natural Hamilton function and a second integral of motion which is a polynomial of sixth order in momenta. The corresponding variables of separation are images of usual parabolic coordinates on the plane after a suitable Bäcklund transformation. We also present separated relations and prove that the corresponding vector field is bi-Hamiltonian.
Keywords: finite-dimensional integrable systems, separation of variables, Bäcklund transformations.
@article{ND_2017_13_1_a7,
     author = {A. V. Tsiganov},
     title = {On an integrable system on a plane with an integral of motion of sixth order in momenta},
     journal = {Russian journal of nonlinear dynamics},
     pages = {117--127},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_1_a7/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - On an integrable system on a plane with an integral of motion of sixth order in momenta
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 117
EP  - 127
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_1_a7/
LA  - ru
ID  - ND_2017_13_1_a7
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T On an integrable system on a plane with an integral of motion of sixth order in momenta
%J Russian journal of nonlinear dynamics
%D 2017
%P 117-127
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_1_a7/
%G ru
%F ND_2017_13_1_a7
A. V. Tsiganov. On an integrable system on a plane with an integral of motion of sixth order in momenta. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 117-127. http://geodesic.mathdoc.fr/item/ND_2017_13_1_a7/